CURRENT SAMPLING CIRCUIT AND METHOD

Applicant: Sanechips Technology Co., Ltd., Shenzhen, Guangdong (CN)

Inventors: Xiaozhen Song, Shenzhen (CN); Jie Hu, Shenzhen (CN); Yongbo Zhang, Shenzhen (CN)

Assignee: Sanechips Technology Co., Ltd., Shenzhen, Guangdong (CN)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 90 days.

Appl. No.: 14/773,758

PCT Filed: Nov. 10, 2014

PCT No.: PCT/CN2014/090733

Date: Sep. 9, 2015

PCT Pub. No.: WO2015/149521

PCT Pub. Date: Oct. 8, 2015

Prior Publication Data
US 2016/0109487 A1 Apr. 21, 2016

Foreign Application Priority Data
Apr. 3, 2014 (CN) 2014 1 0134447

Int. Cl.
G06G 7/186 (2006.01)
H03K 17/687 (2006.01)
G01R 19/00 (2006.01)

U.S. Cl.
CPC G01R 19/0038 (2013.01); G01R 19/0092 (2013.01); H03K 17/687 (2013.01)

Disclosed is a current sampling circuit including a proportional current output circuit and a full differential common mode negative feedback circuit. Specifically, the proportional current output circuit is configured to calculate a current output from a power device according to a preset proportion to obtain a first proportional current and a second proportional current, and to output the first proportional current and the second proportional current to the full differential common mode negative feedback circuit; and the full differential common mode negative feedback circuit is configured to shunt respectively the first proportional current and the second proportional current using a full differential common mode negative feedback network with a bias current in the secondary circuit.
microamps to obtain a first sampling current and a second sampling current, and to output constantly the first sampling current and the second sampling current. Further disclosed is a current sampling method.

3 Claims, 4 Drawing Sheets

(58) Field of Classification Search
USPC: 327/91-96, 334, 337, 554; 341/122-125
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,918,338 A * 4/1990 Wong H03F 1/56
5,374,857 A 12/1994 Carobolante
5,508,570 A * 4/1996 Laber G06G 7/186
5,585,746 A 12/1996 Franke
5,994,996 A * 11/1999 Van Den Broek H01C 17/05553
7,164,317 B1 1/2007 Lorenz
8,479,222 B2 6/2014 Williams
2011/0221421 A1 9/2011 Williams
2011/0248702 A1 10/2011 Kume
2012/0062240 A1 3/2012 Nishijima
2014/0021979 A1 1/2014 Huang
2014/0285178 A1 9/2014 Williams

FOREIGN PATENT DOCUMENTS

CN 202374224 U 8/2012
CN 202794314 U 3/2013
CN 103558445 A 2/2014

OTHER PUBLICATIONS

* cited by examiner
A current output from a power device is calculated according to a preset proportion to obtain a first proportional current and a second proportional current.

The first proportional current and the second proportional current are shunted respectively using a full differential common mode negative feedback network and a bias current in microamps to obtain a first sampling current and a second sampling current, and the first sampling current and the second sampling current are output constantly.
CURRENT SAMPLING CIRCUIT AND METHOD

TECHNICAL FIELD

The present disclosure relates to current sampling techniques in the field of circuit design, and in particular to a current sampling circuit and method.

BACKGROUND

In related arts, implementation of a highly accurate current sampling circuit is as shown in FIG. 1, the current sampling circuit includes a power transistor M1, sampling transistors M2 and M3, and a close loop negative feedback circuit consisting of an operational amplifier, a transistor M4 and resistors R1, R2, wherein R1=R2, 11 and 12 are bias currents providing a quiescent operating point of the close loop negative feedback circuit, and the gain of the close loop negative feedback circuit is:

\[\frac{A_{V_{out}}}{A_{V_{in}}} = \frac{R_2}{R_1} \]

In the current sampling circuit as shown in FIG. 1, the current in the power transistor M1 is firstly mirrored into the sampling transistors M2 and M3, after passing through the close loop negative feedback circuit consisting of the operational amplifier, the transistor M4 and the resistors R1 and R2, the mirrored current is output as a sampling current. In the above current sampling circuit, the clamping effect of the operational amplifier is used to ensure that a first input voltage \(V_{in} \) is equal to a second input voltage \(V_{out} \), so that the output sampling current \(I_{out} \) is the same as the current flowing through the sampling transistors M2 and M3, thereby the current in the power transistor M1 can be sampled stably and accurately; if the current in the power transistor M1 changes direction, the output sampling current also changes direction, thereby implementing accurate sampling of current in both directions.

The current sampling scheme in the related arts has the following disadvantages: 1) it is disadvantageous for applications in large-scale circuits having a high integration density; 2) the current sampling circuit is not energy-saving due to its high power consumption.

SUMMARY

Embodiments of the disclosure are intended to provide a current sampling circuit that has an integrated circuit structure, a low power consumption and a low cost and can output a stable and accurate sampling current, and a corresponding current sampling method.

The technical solutions of the disclosure are implemented as follows.

An embodiment of the disclosure provides a current sampling circuit including a proportional current output circuit and a full differential common mode negative feedback circuit.

Specifically, the proportional current output circuit is configured to calculate a current output from a power device according to a preset proportion to obtain a first proportional current and a second proportional current, and to output the first proportional current and the second proportional current to the full differential common mode negative feedback circuit; and

the full differential common mode negative feedback circuit is configured to shunt respectively the first proportional current and the second proportional current using a full differential common mode negative feedback network with a bias current in microamps to obtain a first sampling current and a second sampling current, and to output constantly the first sampling current and the second sampling current.

In the above solution, the power device may be implemented by a first Lateral Diffusion N-channel Metal-Oxide-Semiconductor (LDN莫斯), the proportional current output circuit may include a second LDNmos, a third LDNmos, a fourth LDNmos and a fifth LDNmos; and

the full differential common mode negative feedback circuit may include a first P-channel Metal-Oxide-Semiconductor (PMOS), a second PMOS, a third PMOS, a fourth PMOS, a first resistor, a second resistor, a second reference current source, a third reference current source, a fourth reference current source, and a fifth reference current source.

In the above solution, in the proportional current output circuit, the drain of the second LDNmos is connected with the drain of the fourth LDNmos and a power supply, the gate of the second LDNmos is connected with the gate of the first LDNmos, the gate of the third LDNmos and a gate driving voltage (hvdv _in from a gate driving circuit), the source of the second LDNmos is connected respectively with the drain of the third LDNmos and the drain of the fifth LDNmos; the source of the third LDNmos is connected respectively with the source of the first LDNmos and a first end of the first reference current source; the gate of the fourth LDNmos is connected with the gate of the fifth LDNmos, the source of the fourth LDNmos is connected respectively with the source of the first PMOS and the source of the third PMOS in the full differential common mode negative feedback circuit; the source of the fifth LDNmos is connected respectively with the source of the second PMOS and the source of the fourth PMOS in the full differential common mode negative feedback circuit; in the full differential common mode negative feedback circuit, the gate of the first PMOS is connected with the gate of the second PMOS, the drain of the first PMOS is connected respectively with a first end of the first resistor, the gate of the fourth PMOS and a first end of the third reference current source; the drain of the second PMOS is connected respectively with a first end of the second resistor, the gate of the third PMOS and a first end of the fourth reference current source; the drain of the third PMOS is connected with a first end of the second reference current source; the drain of the fourth PMOS is connected with the fifth reference current source; a second end of the first resistor is connected respectively with a second end of the second resistor, the gate of the first PMOS and the gate of the second PMOS; second ends of the first reference current source, the second reference current source, the third reference current source, the fourth reference current source and the fifth reference current source are all connected to a ground point; and

the drain of the first LDNmos is connected to the power supply.

Based on the above current sampling circuit, an embodiment of the disclosure further provides a current sampling method, and the method includes:

a current output from a power device is calculated according to a preset proportion to obtain a first proportional current and a second proportional current; and

the first proportional current and the second proportional current are shunted respectively using a full differential common mode negative feedback network and a bias current in microamps to obtain a first sampling current and a second
sampling current, and the first sampling current and the second sampling current are output constantly.

In the above solution, the step that a current output from a power device is calculated according to a preset proportion to obtain a first proportional current and a second proportional current may include:

- a ratio between the current output from the power device and the preset proportion is calculated, and an obtained ratio is taken as a current value of a proportional branch;
- the first proportional current and the second proportional current are determined according to the current value of the proportional branch.

In the above solution, the step that the first proportional current and the second proportional current are shunted respectively using a full differential common mode negative feedback network and a bias current in microamps to obtain a first sampling current and a second sampling current may include:

- the first sampling current \(I_{\text{s1}} \) and the second sampling current \(I_{\text{s2}} \) are obtained from the following formula:

\[
I_{\text{s1}} = I_p \times I_{\text{s2}} = I_b
\]

where \(I_p \) is the first proportional current, \(I_{\text{s2}} \) is the second proportional current, and \(I_b \) is the bias current in microamps provided by the full differential common mode negative feedback network.

Compared to the related arts, the current sampling circuit and the method provided by the embodiments of the disclosure have the following advantages:

1) in the embodiments of the disclosure, a full differential common mode negative feedback circuit including four PMOSs and two resistors is used to replace a close loop negative feedback circuit including transistors and an operational amplifier, in this way, it can be ensured that the full differential common mode negative feedback network has a gain larger than 60 dB, generally between 70 to 88 dB, and the higher the gain is, the more a stable sampling current output can be ensured, thereby implementing a stable sampling current output; in addition, the structure of the full differential common mode negative feedback circuit according to the embodiments of the disclosure is simpler when compared to that of the close loop negative feedback circuit in the related arts; and a sampling current output from the full differential common mode negative feedback circuit is only related to dimensions of a transistor and not affected by process variations, thus an accurate sampling current can be output;

2) compared to its counterparts in the related arts, the full differential common mode negative feedback circuit according to the embodiments of the disclosure has a higher integration density, occupies smaller pattern area and has lower cost; and

3) the full differential common mode negative feedback circuit according to the embodiments of the disclosure requires a smaller bias current that is in microamps and generally of 10-20 \(\mu \)A, thus its power consumption is reduced greatly.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic structural diagram of a current sampling circuit in related arts of an embodiment of the disclosure;

FIG. 2 is a schematic structural diagram of a current sampling circuit according to an embodiment of the disclosure;

FIG. 3 is a schematic structural diagram of a current sampling circuit during practical application of an embodiment of the disclosure;

FIG. 4 is an equivalent structural diagram of a full differential common mode negative feedback network according to an embodiment of the disclosure;

FIG. 5 is a schematic structural diagram of a folding current sampling circuit according to an embodiment of the disclosure; and

FIG. 6 is a flow chart of a current sampling method according to an embodiment of the disclosure.

DETAILED DESCRIPTION

During implementation of the present application, the applicant finds that current sampling schemes in related arts include at least the following disadvantages:

1) in the above current sampling circuit, in order to provide a main gain of the close loop negative feedback circuit, it is required to add an error amplifier or a adjustment transistor to the clump of the operational amplifier, thus a close loop negative feedback circuit including the operational amplifier and the error amplifier or the adjustment transistor is intended to occupy too much pattern area, and required overheads of pattern area is higher, therefore, the above current sampling circuit is disadvantageous for applications in large-scale circuits having a high integration density; and

2) in the above current sampling circuit, the close loop negative feedback circuit requires large bias currents \(I_1 \) and \(I_2 \) in amps or millamps, thus the above current sampling circuit consumes more power and is disadvantageous for the energy-saving development trend.

In an embodiment of the disclosure, a current output from a power device is calculated according to a preset proportion to obtain a first proportional current and a second proportional current; and the first proportional current and the second proportional current are shunted respectively using a full differential common mode negative feedback network and a bias current in microamps to obtain a first sampling current and a second sampling current, and the first sampling current and the second sampling current are output constantly.

Specific embodiments of the disclosure will be further elaborated below with reference to the drawings.

An embodiment of the disclosure provides a current sampling circuit for sampling current of a power device, as shown in FIG. 2, the current sampling circuit includes a proportional current output circuit \(201 \) and a full differential common mode negative feedback circuit \(202 \).

Specifically, the proportional current output circuit \(201 \) is configured to calculate a current output from a power device according to a preset proportion to obtain a proportional current, and to output the proportional current to the full differential common mode negative feedback circuit \(202 \); and

the full differential common mode negative feedback circuit \(202 \) is configured to shunt respectively the first proportional current and the second proportional current using a full differential common mode negative feedback network with a bias current in microamps to obtain a first sampling current and a second sampling current, and to output constantly the first sampling current and the second sampling current.

Herein, the power device may be implemented by a Negative channel Metal Oxide Semiconductor (NMOS), a Positive channel Metal Oxide Semiconductor (PMOS), a...
Lateral Diffusion NMOS (LDNMOS), a Lateral Diffusion PMOS (LDPMOS), and a PNP transistor or an NPN transistor that has power output function; preferably, the embodiment of the disclosure is implemented by an LDNMOS, and a first LDNMOS M_1 shown in FIG. 3 is namely a power device.

Specific structures of the proportional current output circuit 201 and of the full differential common mode negative feedback circuit 202 will be elaborated below based on the current sampling circuit shown in FIG. 3 from a practical application perspective.

The proportional current output circuit 201 includes a second LDNMOS M_2, a third LDNMOS M_3, a fourth LDNMOS M_4, and a fifth LDNMOS M_5; and

The full differential common mode negative feedback circuit 202 includes a first PMOS M_{6a}, a second PMOS M_{7a}, a third PMOS M_{8a}, a fourth PMOS M_{9a}, a first resistor R_{1a}, a second resistor R_{2a}, a second reference current source I_{2a}, a third reference current source I_{3a}, a fourth reference current source I_{4a}, and a fifth reference current source I_{5a}.

Herein transistors M_{6a}, M_{7a}, M_{8a}, M_{9a}, M_{10a}, M_{11a}, M_{12a}, M_{13a}, M_{14a}, and M_{15a} are driven by V_{in}, thus these transistors operate in the linear region and are equivalent to resistors, and the maximum withstanding voltage of each of the transistors $M_{6a}, M_{7a}, M_{8a}, M_{9a}, M_{10a}, M_{11a}, M_{12a}, M_{13a}, M_{14a}, M_{15a}$ is 18V.

Herein transistors $M_{6a}, M_{7a}, M_{8a}, M_{9a}$ in the full differential common mode negative feedback circuit 202 are implemented by a PMOS transistor with a maximum withstanding voltage of 20V.

Herein transistors in the full differential common mode negative feedback circuit 202 can also be implemented as required, by NMOS, NPN or PNP transistors.

Further, the connection relation of respective devices in the current sampling circuit according to the embodiment of the disclosure is elaborated with reference to FIG. 2.

In the proportional current output circuit 201, the drain of the second LDNMOS M_2 is connected with the drain of the fourth LDNMOS M_4 and a power supply V_{in}, the gate of the second LDNMOS M_2 is connected with the gate of the first LDNMOS M_1, the gate of the third LDNMOS M_3 and an output h_{drv_in} of a gate driving circuit (namely driven by a voltage signal output from the gate driving circuit), the source of the second LDNMOS M_2 is connected respectively with the drain of the third LDNMOS M_3 and the drain of the fifth LDNMOS M_5; the source of the third LDNMOS M_3 is connected respectively with the source of the first LDNMOS M_1, and one end of the first reference current source I_{1a}; the gate of the fourth LDNMOS M_4 is connected with the gate of the fifth LDNMOS M_5, the source of the fourth LDNMOS M_4 is connected respectively with the source of the first PMOS M_{6a} and the source of the third PMOS M_{8a} in the full differential common mode negative feedback circuit 202; the source of the fifth LDNMOS M_5 is connected respectively with the source of the second PMOS M_{7a} and the source of the fourth PMOS M_9 in the full differential common mode negative feedback circuit 202.

in the full differential common mode negative feedback circuit 202, the gate of the first PMOS M_{6a} is connected with the gate of the second PMOS M_{7a}, the drain of the first PMOS M_{6a} is connected with one end of the first reference resistor R_{1a}, the gate of the fourth PMOS M_9, and one end of the third reference current source I_{3a}; the drain of the second PMOS M_{7a} is connected with one end of the second reference current source I_{2a}; the drain of the fourth PMOS M_9 is connected with the fifth reference current source I_{5a}; the other end of the first reference current source I_{1a} is connected respectively with the other end of the second reference source R_{2a}, the gate of the first PMOS M_{6a} and the gate of the second PMOS M_{7a}; the other ends of the first reference current source the second reference current source I_{2a}, the third reference current source I_{3a}, the fourth reference current source I_{4a} and the fifth reference current source I_{5a} are all connected to a ground point;

the drain of the first LDNMOS M_1 is connected to the power supply V_{in}.

In the embodiment of the disclosure, based on the above circuit structure and connection relation between devices, the operation principle of the current sampling circuit is as follows.

Firstly, the power device, i.e., a first LDNMOS M_1 outputs I_{power} to the proportional current output circuit 201, the proportional current output circuit 201 calculates the output current I_{power} according to a preset proportion to obtain a first proportional current and a second proportional current and outputs them to the full differential common mode negative feedback circuit 202.

Herein, the gate voltage of the transistors $M_{6a}, M_{7a}, M_{8a}, M_{9a}$ are driven by h_{drv_in}, thus these transistors operate in the linear region and are equivalent to resistors, and each of the transistors $M_{6a}, M_{7a}, M_{8a}, M_{9a}$ has a maximum withstanding voltage of 18V since the voltage V_{in} input by the power supply has a maximum value of 18V.

Herein, the conductance of a transistor

$$G = \frac{1}{\mu \cdot C_{ox} \cdot \frac{W}{L} (V_{gs} - V_{th} - V_{sh}) \times \frac{W}{L}}$$

where $\mu \cdot C_{ox}$ is a constant factor of the transistor, V_{gs} is a gate-source voltage of the transistor, V_{sh} is a threshold voltage of the transistor, V_{th} is a drain-source voltage of the transistor, W is the width of the channel, L is the length of the channel; since the conductance of the transistor

$$G = \frac{W}{L}$$

the conductance G of the transistor can be adjusted by setting the width and the length of the channel of the transistor; in the embodiment of the disclosure, for conductance of $M_{6a}, M_{7a}, M_{8a}, M_{9a}$, it is preset that $G_{7a} = X \times G_{5a} = X \times G_{1a}$; $G_{9a} = Y \times G_{x} = Y \times G_{6a}$, where X and Y are preset constants of proportionality.

Specifically, the proportional current output circuit 201 firstly calculates the output current I_{power} according to the preset proportion to obtain:

$$I_{power}/I_{h} = \left(\frac{1}{G_{5a}} + \frac{1}{G_{1a}}\right)/\left(\frac{1}{G_{5a}}\right) = 2X$$

where I_{h} is the value of current flowing through the transistor M_{5a}, and
are resistances of the transistors \(M_1, M_2, M_3 \) respectively;

then the obtained current \(I_{t_1} \) is output to drains of transistors \(M_3, M_4 \) so as to obtain a first proportional current \(I_{t_1} \) flowing through the transistor \(M_4 \) and a second proportional current \(I_{t_2} \) flowing through the transistor \(M_5 \), the first proportional current \(I_{t_1} \) is output to sources of the transistors \(M_4 \) and \(M_5 \) in the full differential common mode negative feedback circuit 202, and the second proportional current \(I_{t_2} \) is output to sources of the transistors \(M_4 \) and \(M_5 \) in the full differential common mode negative feedback circuit 202; the transistors \(M_4 \) and \(M_5 \) have an effect of isolating a high voltage, thus it is possible to prevent breakdown of the full differential common mode negative circuit 202 by the high voltage.

Finally, the full differential common mode negative feedback circuit 202 is in the form of a full differential common mode negative feedback network consisting of transistors \(M_4, M_5, M_6, M_7, R_1, R_2 \), the second reference current source \(I_{r_2} \), a third reference current source \(I_{r_3} \) and a fourth reference current source \(I_{r_4} \), and the third reference current source \(I_{r_3} \) and the fourth reference current source \(I_{r_4} \) are used to provide the full differential common mode negative feedback network with a bias current \(I_b \) in micromas; the first proportional current \(I_{t_1} \) and the second proportional current \(I_{t_2} \) are shunted respectively to obtain a first sampling current \(I_{sense_{t_1}} \) and a second sampling current \(I_{sense_{t_2}} \).

where \(I_{t_1}=I_{sense_{t_1}}+I_{r_2}, I_{t_2}=I_{sense_{t_2}}+I_{r_3} \), \(I_{sense_{t_1}} \) is a current flowing through the transistor \(M_4, I_{sense_{t_2}} \) is a current flowing through the transistor \(M_5 \), \(I_{r_2} \) is a current flowing through the third reference current source \(I_{r_2} \), \(I_{r_3} \) is a current flowing through the fourth reference current source \(I_{r_4} \), and \(I_{r_3} \) is a benchmark bias current providing the transistors \(M_4, M_5 \) with a quiescent operating point and as low as 10 to 20 \(\mu \)A, thus compared to the current sampling circuit in related arts, the current sampling circuit according to the embodiment of the disclosure has a greatly reduced power consumption.

In above embodiments of the disclosure, the full differential common mode negative feedback network is equivalent to a negative feedback network including an operational amplifier, as shown in FIG. 4; wherein a circuit consisting of transistors \(M_4, M_5 \) and resistors \(R_1, R_2 \) is equivalent to an operational amplifier, points \(C \) and \(D \) are taken as inputs of the operational amplifier, and the two sampling currents are taken approximately as being connected to the input and output of the operational amplifier. Due to the clamping effect of the operational amplifier, its inputs \(C \) and \(D \) have a same voltage, the first sampling current \(I_{sense_{t_1}} \) from the output is fed back to the input \(C \) of the operational amplifier via the transistor \(M_4 \), the second sampling current \(I_{sense_{t_2}} \) from the output is fed back to the input \(D \) of the operational amplifier via the transistor \(M_5 \), thus an effect of an operational amplifier feedback network is resulted, and it is possible to provide the current sampling circuit with a stable gain, therefore, the current sampling circuit according to the embodiment of the disclosure occupies smaller pattern area, has a higher integration density and lower cost.

Herein, when a current flowing through the transistor \(M_1 \) is downwards (i.e., reverse), the forward first sampling current \(I_{sense_{t_1}} \) will flow through a branch where the transistor \(M_4 \) is located, and a reverse second sampling current \(I_{sense_{t_2}} \) of 0 will flow through the transistor \(M_5 \); on the contrary, when the current flowing through the transistor \(M_1 \) is upwards (i.e., reverse), the forward first sampling current of 0 will flow through the branch where the transistor \(M_5 \) is located, and the reverse second sampling current \(I_{sense_{t_2}} \) will flow through the transistor \(M_4 \) and \(I_{sense_{t_1}} \) thus two branches operate separately and there is no interference therebetween, thereby implementing current sampling in both directions.

How to obtain the forward first sampling current \(I_{sense_{t_1}} \) in an embodiment of the disclosure will be elaborated below by taking current sampling in a forward direction as an example, KVL (Kirchhoff’s Voltage Law) equations obtained from point \(A \) to point \(G \) are as follows:

\[
I_{t_1} \times \left(\frac{1}{G_1} \right) + V_{sg} = I_{t_1} \times \left(\frac{1}{G_2} \right) + 0 \times \left(\frac{1}{G_3} \right) + V_{sg} \tag{2}
\]

\[
V_{sg} = V_{sg} \tag{3}
\]

\[
I_{t_2} = I_{t_1} + I_{sense_{t_1}} \tag{4}
\]

where \(V_{sg} \) is a gate-source voltage of the transistor \(M_6 \), \(V_{sg} \) is a gate-source voltage of the transistor \(M_7 \); it can be obtained from equations (1), (2), (3) and (4):

\[
I_{sense_{t_1}} = I_{t_1} \times \left(\frac{G_1}{G_2} \right) = I_{t_1} / Y = I_{sense_{t_2}} / (2XY) \tag{5}
\]

it can be seen that the first sampling current \(I_{sense_{t_1}} \) in the embodiment of the disclosure is only related to the width and length of a transistor and not affected by process variations, thus a sampling current with improved accuracy can be obtained.

In the embodiment of the disclosure, the method for calculating the reverse second sampling current \(I_{sense_{t_2}} \) is similar to the method for calculating the forward first sampling current \(I_{sense_{t_1}} \); and the reverse second sampling current is equal to the forward first sampling current, i.e., the second sampling current \(I_{sense_{t_2}} = I_{sense_{t_1}} / (2XY) \), thus duplicated content thereof will be omitted.

In practical applications, the proportional current output circuit 201 and the full differential common mode negative feedback circuit 202 can be applied to a charger chip of a power supply management chip.

The current sampling circuit in the embodiment of the disclosure can also be of a folding structure, the folding current sampling circuit has a similar principle as that of the above current sampling circuit, and it has flexible applications, as shown in FIG. 5, the current sampling circuit includes a proportional current output circuit 501 and a full differential common mode negative feedback circuit 502; specifically, the proportional current output circuit 501 includes a second LDNMOS \(M_2 \), a third LDNMOS \(M_3 \), a fourth LDNMOS \(M_4 \), a fifth LDNMOS \(M_5 \), a sixth LDNMOS \(M_6 \), a seventh LDNMOS \(M_7 \), and an eighth LDNMOS \(M_8 \);

the full differential common mode negative feedback circuit 502 includes a first PMOS \(M_{10} \), a second PMOS \(M_{11} \), a third PMOS \(M_{12} \), a fourth PMOS \(M_{13} \), a sixth PMOS \(M_{14} \), a first resistor \(R_1 \), a second resistor \(R_2 \), a second reference current source \(I_{r_2} \), a third reference current source \(I_{r_3} \), a fourth reference current source \(I_{r_4} \), a ninth NMOS \(M_{15} \), a tenth NMOS \(M_{16} \), an eleventh NMOS \(M_{17} \), a twelfth NMOS \(M_{18} \), a thirteenth NMOS \(M_{19} \), and a fourteenth NMOS \(M_{20} \).
Herein, transistors M_2, M_3, M_4, M_5, M_6, M_7, M_8 in the proportional current output circuit 201 are implemented by an LDMOS transistor of the same type as that of power transistor M_1, with a voltage being a gate driving voltage V_{dd}, thus respective transistors operate in the linear region and are equivalent to resistors, and each of the transistors is implemented by a transistor with the maximum withstandin voltage of 18 V.

Herein, voltages of transistors M_{10}, M_{11}, M_{12}, M_{13}, M_{14} in the full differential common mode negative feedback circuit are all maintained at a voltage of 20 V; voltages of transistors M_{15}, M_{16}, M_{21}, M_{22}, M_{23}, M_{24} can be adjusted appropriately to ensure a benchmark bias current I_b desired in the full differential common mode negative feedback circuit 502, and the benchmark bias current I_b providing M_{10} a quiescent operating point is as low as 10 to 20 μA.

Herein, transistors in the full differential common mode negative feedback circuit 502 can also be implemented, as required, by NMOS, NPN or PNP transistors.

The connection relation of respective devices in the folding current sampling circuit according to the embodiment of the disclosure is elaborated below with reference to FIG. 5.

In the proportional current output circuit 501, the drain of the transistor M_3 is connected with a power supply V_{dd}, the gate of the transistor M_5 is connected with the gate of the transistor M_1, the gate of the transistor M_3, the gate of the transistor M_4, the gate of the transistor M_5, a driving voltage V_{dd}, in the source of the transistor M_2 is connected with the drain of the transistor M_4, and the drain of the transistor M_5 in a current mirror circuit 502; the source of the transistor M_1 is connected with the source of the transistor M_4, and one end of the first reference current source I_1; the gate of the transistor M_2 is connected with the gate of the transistor M_1, and the gate of the transistor M_4, the source of the transistor M_2 is connected with the source of the transistor M_4, and the source of the transistor M_4, in the full differential common mode negative feedback circuit 502; the source of the transistor M_3 is connected with the source of the transistor M_4, and the source of the transistor M_1, in the full differential common mode negative feedback circuit 502; the source of the transistor M_3 is connected with the source of the transistor M_4, and the source of the transistor M_1, in the full differential common mode negative feedback circuit 502; the source of the transistor M_3 is connected with the source of the transistor M_4, and the source of the transistor M_1, in the full differential common mode negative feedback circuit 502; the source of the transistor M_3 is connected with the source of the transistor M_4, and the source of the transistor M_1, in the full differential common mode negative feedback circuit 502; the source of the transistor M_3 is connected with the source of the transistor M_4, and the source of the transistor M_1.
where \(I_{n1} \) is the first proportional current, \(I_{n2} \) is the second proportional current, and \(I_b \) is the bias current in microamps provided by the full differential common mode negative feedback network.

Although only preferable embodiments of the disclosure are described, those skilled in the art know the basic inventive concept, they can make other modifications and changes to these embodiments. Thus the accompanying claims are intended to include preferable embodiments and all changes and modifications within the scope of protection of the disclosure.

It is obvious that various changes and variations can be made by those skilled in the art without departing from the spirit and scope of the disclosure. In this way, if these modifications and variations fall within the scope of the claims and equivalent techniques, the disclosure is intended to include these changes and variations.

The invention claimed is:

1. A current sampling circuit, comprising: a proportional current output circuit and a full differential common mode negative feedback circuit,

the proportional current output circuit is configured to calculate a current output from a power device according to a preset proportion to obtain a first proportional current and a second proportional current, and to output the first proportional current and the second proportional current to the full differential common mode negative feedback circuit; and

the full differential common mode negative feedback circuit is configured to shunt respectively the first proportional current and the second proportional current using a full differential common mode negative feedback network and a bias current in microamps to obtain a first sampling current and a second sampling current, and to output constantly the first sampling current and the second sampling current; and

wherein the power device is implemented by a first Lateral Diffusion N-channel Metal-Oxide-Semiconductor (LDNMOS);

the proportional current output circuit comprises a second LDNMOS, a third LDNMOS, a fourth LDNMOS and a fifth LDNMOS; and

the full differential common mode negative feedback circuit comprises a first P-channel Metal-Oxide-Semiconductor (PMOS), a second PMOS, a third PMOS, a fourth PMOS, a first resistor, a second resistor, a second reference current source, a third reference current source, a fourth reference current source, and a fifth reference current source; and

wherein in the proportional current output circuit, the drain of the second LDNMOS is connected with the drain of the fourth LDNMOS and a power supply, the gate of the second LDNMOS is connected with the gate of the first LDNMOS, the gate of the third LDNMOS and a gate driving voltage, the source of the second LDNMOS is connected respectively with the drain of the third LDNMOS and the drain of the fifth LDNMOS; the source of the third LDNMOS is connected respectively with the source of the first LDNMOS and a first end of the first reference current source; the gate of the fourth LDNMOS is connected with the gate of the fifth LDNMOS, the source of the fourth LDNMOS is connected respectively with the source of the first PMOS and the source of the third PMOS in the full differential common mode negative feedback circuit;

2. A current sampling method, comprising:

calculating a current output from a power device according to a preset proportion to obtain a first proportional current and a second proportional current; and

shunting respectively the first proportional current and the second proportional current using a full differential common mode negative feedback network and a bias current in microamps to obtain a first sampling current and a second sampling current, and outputting constantly the first sampling current and the second sampling current; wherein the shunting respectively the first proportional current and the second proportional current using a full differential common mode negative feedback network with a bias current in microamps to obtain a first sampling current and a second sampling current comprises:

obtaining the first sampling current \(I_{\text{sense,1}} \) and the second sampling current \(I_{\text{sense,2}} \) from the following formula:

\[
I_{\text{sense,1}} = I_{n1} - I_b
\]

\[
I_{\text{sense,2}} = I_{n2} - I_b
\]

where \(I_{n1} \) is the first proportional current, \(I_{n2} \) is the second proportional current, and \(I_b \) is the bias current in microamps provided by the full differential common mode negative feedback network.

3. The current sampling method according to claim 2, wherein the calculating a current output from a power device according to a preset proportion to obtain a first proportional current and a second proportional current comprises:

calculating a ratio between the current output from the power device and the preset proportion, and taking an obtained ratio as a current value of a proportional branch;

determining the first proportional current and the second proportional current according to the current value of the proportional branch.