SERVICE PROCESSING METHOD AND DEVICE FOR UBIQUITOUS UE

Inventor: Alfang Sun, Shenzhen (CN)
Assignee: ZTE Corporation, Shenzhen, Guangdong (CN)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 48 days.

Appl. No.: 14/232,608
PCT Filed: Apr. 19, 2012
PCT No.: PCT/CN2012/074402
§ 371 (c)(1), (2), (4) Date: Jan. 13, 2014
PCT Pub. No.: WO2012/155758
PCT Pub. Date: Nov. 22, 2012
Prior Publication Data

Foreign Application Priority Data
Aug. 9, 2011 (CN) 2011 1 0226888

Int. Cl.
H04W 8/22 (2009.01)
H04W 4/04 (2009.01)
(Continued)

U.S. Cl.
CPC H04W 8/22 (2013.01); H04W 4/043 (2013.01); H04W 4/18 (2013.01); H04W 88/06 (2013.01)

Field of Classification Search
CPC H04W 8/22; H04W 88/06
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
(Continued)
FOREIGN PATENT DOCUMENTS
CN 1805355 A 7/2006
CN 101895468 A 11/2010

OTHER PUBLICATIONS
(Continued)

Primary Examiner — Albert T Chou
Attorney, Agent, or Firm — Oppenahl Patent Law Firm LLC

ABSTRACT
The disclosure discloses a service processing device for a ubiquitous User Equipment (UE). The device is a UE middleware embedded in the ubiquitous UE, and includes: a data transferring module, configured to perform data interaction with a ubiquitous node (U-node) via a protocol layer for U-node network connectivity and a protocol layer for wide-area connectivity; an interaction-frame module, configured to provide a capability to select from and convert between different communication-interaction models for data interaction between a functioning module and the U-node via the data transfer module; and the functioning module, configured to determine a UE capability required by a service, determine required U-nodes in a peripheral network environment, aggregate the required U-nodes into a virtual UE, integrate service data, and present the integrated data to a user. The disclosure further discloses a service processing method for a ubiquitous UE. With the solution of the disclosure, a ubiquitous UE in a ubiquitous network is allowed to acquire context information in time, thereby achieving optimized resource utilization and adaptation to a dynamically changing environment.

10 Claims, 2 Drawing Sheets
Supplementary European Search Report in European application No. 12785570.8, mailed on Mar. 25, 2015.

* cited by examiner
101. a UE middleware is embedded in a ubiquitous UE; the UE middleware performs data interaction with a U-node via a protocol layer for U-node network connectivity and a protocol layer for wide-area connectivity, and determines a UE capability required by a service by analyzing a service request.

102. the UE middleware determines required U-nodes in a peripheral network environment according to the UE capability required by the service.

103. the UE middleware aggregates the required U-nodes into a virtual UE.

104. the UE middleware integrates service data provided by the virtual UE, and presents the integrated data to a user via a service component.
SERVICE PROCESSING METHOD AND DEVICE FOR UBIQUITOUS UE

TECHNICAL FIELD

The disclosure relates to the field of wireless communication technique, and in particular to a service processing method and device for a User Equipment (UE).

BACKGROUND

With the continuous development of and research on the ubiquitous network, features such as merging multiple heterogeneous networks, diversified services and peripheral network equipments under a ubiquitous-network architecture become increasingly prominent. In such a network environment, with the continuous expansion and implementation of ubiquitous networks, an increasingly outstanding problem is how to make the most of a peripheral UE around a user to provide the user with fast and outstanding services and achieve the best user experience.

At present, to meet a service request of a user, point-to-point service transfer with the user is accomplished generally using a single-network single-traffic service mode; in an alternative mode, a sensing network or other personal area network (PAN) is adopted to collect data via a local gateway, and then the point-to-point service transfer with the user is further accomplished using the single-network single-traffic service mode. Both modes can meet the requirement of the user in the case that the service demand of the user is small and there are only a single peripheral UE and a single peripheral network around the user. However, for a ubiquitous network formed by merging multiple heterogeneous networks, when facing service demands of multiple users, multiple peripheral networks, and multiple peripheral UEs, adoption of these two modes not only will take up a large bandwidth and lead to a network jam, but will also affect the duration in responding a service request by a user depending on the network load; and failure to respond will occur possibly due to access of a same service by multiple users, which will further affect the Quality of Service (QoS) of the network seriously.

SUMMARY

In view of this, it is desired that an embodiment of the disclosure provides a service processing method and device for a ubiquitous UE, capable of optimizing resource utilization and adaptation to a dynamically changing environment in a ubiquitous network.

To this end, a technical solution of the disclosure is implemented as follows:

The disclosure provides a service processing device for a ubiquitous User Equipment (UE), the device being a UE middleware embedded in the ubiquitous UE, the UE middleware including a data transferring module and a functioning module, wherein the data transferring module is configured to perform data interaction with a ubiquitous node (U-node) via a protocol layer for U-node network connectivity and a protocol layer for wide-area connectivity; and the functioning module is configured to: determine a UE capability required by a service by analyzing a service request; determine required U-nodes in a peripheral network environment according to the UE capability required by the service; aggregate the required U-nodes into a virtual UE; integrate service data provided by the virtual UE, and present the integrated data to a user via a service component.

According to an embodiment, the device may further include an interaction-frame module configured to mask different communication modes and messages of various U-nodes, and provide a capability to select from and convert between different communication-interaction models for data interaction between the functioning module and the U-node via the data transfer module.

According to an embodiment, the functioning module may include a service-demand processing unit, a resource discovering unit, a context acquiring-and-processing unit, an aggregation controlling unit, a configuration managing unit, and a distributed-information processing unit, wherein the service-demand processing unit is configured to: analyze the service request to obtain user preference and context information corresponding to information on the service, send the user preference and context information to the context acquiring-and-processing unit, integrate merged service data, and send the integrated service data to the service component to present the integrated service data to the user;

the context acquiring-and-processing unit is configured to acquire the context information of a U-node in the peripheral network environment, determine the UE capability required by the service according to the user preference and context information acquired by the service-demand processing unit, and send the UE capability required by the service to the resource discovering unit;

the resource discovering unit is configured to: when a ubiquitous UE containing the UE middleware does not have the UE capability required by the service, determine the required U-nodes in the peripheral network environment according to the UE capability required by the service and the context information of a U-node in the peripheral network environment, and notify the aggregation controlling unit of the required U-nodes;
the aggregation controlling unit is configured to aggregate the required U-nodes into the virtual UE;
the configuration managing unit is configured to provide an interface required to configure the virtual UE for the user; and
the distributed-information processing unit is configured to merge the service data provided by the virtual UE, and send the merged service data to the service-demand processing unit.

According to an embodiment, the aggregation controlling unit may be specifically configured to aggregate the required U-nodes into the virtual UE according to an aggregation policy for service aggregation with an optimal configuration.

According to an embodiment, the resource discovering unit may be further configured to: when the ubiquitous UE containing the UE middleware has the UE capability required by the service, directly notify the ubiquitous UE containing the UE middleware to provide the service data.

According to an embodiment, the functioning module may further include an initializing unit, a safety-privacy managing unit, an event notifying unit, a reconstruction controlling unit, and an information-policy-library unit, wherein the initializing unit is configured to install and activate data exchanging and interacting functions of each unit; the safety-privacy managing unit is configured to: perform authentication for user access according to information on the user in the service request; and when the user is
authorized to access the requested service, send the service request to the service-demand processing unit; the event notifying unit is configured to: when the state of a ubiquitous UE in the peripheral network environment changes, notify the context acquiring-and-processing unit to update the context information of a U-node in the peripheral network environment; the reconstruction controlling unit is configured to reconstruct the aggregated virtual UE according to the context information of a U-node in the peripheral network environment updated by the context acquiring-and-processing unit; and the information-policy-library unit is configured to provide aggregation policy information and the user preference and context information corresponding to the information on the service.

According to an embodiment, the reconstruction controlling unit may be specifically configured to incorporate a suitable replacing U-node and a reconfigured U-node into the aggregated virtual UE according to the updated context information of a U-node in the peripheral network environment to implement seamless service providing and adaptation to the environment.

According to an embodiment, the service component may include input and output equipments.

The disclosure provides a service processing method for a ubiquitous User Equipment (UE), including: embedding a UE middleware in the ubiquitous UE; performing, by the UE middleware, data interaction with a ubiquitous node (U-node) via a protocol layer for U-node network connectivity and a protocol layer for wide-area connectivity; determining, by the UE middleware, a UE capability required by a service by analyzing a service request; determining required U-nodes in a peripheral network environment according to the UE capability required by the service; and aggregating the required U-nodes into a virtual UE; and integrating, by the UE middleware, service data provided by the virtual UE, and presenting the integrated data to a user via a service component.

According to an embodiment, the method may further include: when the UE middleware receives the service request, performing, by the UE middleware, authentication for user access according to information on the user in the service request, and when the user is authorized, allowing the user to access the requested service.

According to an embodiment, the method may further include: when the state of a ubiquitous UE in the peripheral network environment changes, reconstructing, by the UE middleware, the aggregated virtual UE according to updated context information of a U-node in the peripheral network environment.

The disclosure provides a service processing method and device for a ubiquitous UE, wherein a UE middleware is embedded in a ubiquitous UE; the UE middleware performs data interaction with a U-node via a protocol layer for U-node network connectivity and a protocol layer for wide-area connectivity, determines a UE capability required by a service by analyzing a service request, determines required U-nodes in a peripheral network environment according to the UE capability required by the service, aggregates the required U-nodes into a virtual UE, integrates service data provided by the virtual UE, and presents the integrated data to a user via a service component. Thus, a ubiquitous UE in a ubiquitous network is allowed to acquire context information in time, and dynamical structural adjustment is performed on a virtual organization via aggregation and reconstruction of U-nodes in the peripheral network environment, achieving optimized resource utilization and adaptation to a dynamically changing environment, so as to provide the user with better services and optimal user experience.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram of a structure of an service processing device for a ubiquitous UE; and FIG. 2 is a flowchart of a service processing method for a ubiquitous UE.

DETAILED DESCRIPTION

According to embodiments of the disclosure, a UE middleware is embedded in a ubiquitous UE; the UE middleware performs data interaction with a U-node via a protocol layer for U-node network connectivity and a protocol layer for wide-area connectivity, determines a UE capability required by a service by analyzing a service request, determines required U-nodes in a peripheral network environment according to the UE capability required by the service, aggregates the required U-nodes into a virtual UE, integrates service data provided by the virtual UE, and presents the integrated data to a user via a service component.

The ubiquitous UE refers to a combined system in which a grained resource model is constructed for peripheral network equipments around the user in a ubiquitous network by dividing UE-peripheral (or PAN-peripheral) equipments into U-nodes and U-gadgets according to capabilities and characteristics in use, thereby forming a hierarchical structure in organization of ubiquitous equipments. Furthermore, a U-node refers to a UE behind a node of a network (such as a sensor network, a PAN, an office network, or a vehicle network) in a ubiquitous-network architecture; and a U-gadget refers to an equipment with a converging or processing function in a ubiquitous-network architecture, for example, a UE such as a gateway or a cluster head.

The disclosure is further elaborated with reference to specific embodiments and drawings.

The disclosure implements a service processing device for a ubiquitous UE. As shown in FIG. 1, the device is a UE middleware embedded in a ubiquitous UE, the UE middleware including a data transferring module 11 and a functioning module 13, wherein the data transferring module 11 is configured to perform data interaction with a U-node via a protocol layer for U-node network connectivity and a protocol layer for wide-area connectivity using a Transfer Control Protocol (TCP)/User Datagram Protocol (UDP); the protocol layer for U-node network connectivity and the protocol layer for wide-area connectivity may encapsulate a network protocol of a wireless point-to-point (ad hoc) mode, such as 802.11 of an ad hoc mode (a, b, g), Bluetooth, Ad hoc On-Demand Distance Vector Routing (AODV), a Dynamic Source Routing (DSR) protocol, and the like, for data transmission between the functioning module 13 and a U-node, between a U-node and a U-gadget, between U-gadgets, or between other wide-area equipments; and the functioning module 13 is configured to: determine a UE capability required by a service by analyzing a service request; determine required U-nodes in a peripheral network environment according to the UE capability required by the service; aggregate the required U-nodes
into a virtual UE; integrate service data provided by the
virtual UE, and present the integrated data to a user via
a service component.

The device may further includes an interaction-frame mod-
ule 13 configured to mask different communication modes
and messages of various U-nodes, and provide a capability to
select from and convert between different communication-
interaction models for data interaction between the function-
ing module and the U-node via the data transfer module,
wherein a communication-interaction model defines the
semantic effect of data exchange with a U-node, a service-
resource related operation including Create, Read, Update,
Delete, and the like, and defines specifications concerning
data organization, control primitives, data representation,
roles of interacting parties, and the like; the communication-
interaction models include a Remote Procedure Call Protocol
(RPC), (publish/subscribe), data spaces, blackboards, and the
like.

The service component may include, but is not limited to:
input and output equipments, such as keyboards, monitors,
and the like;

the functioning module 13 may include a service-demand
processing unit 131, a resource discovering unit 132, a
context acquiring-and-processing unit 133, an aggrega-
tion controlling unit 134, a configuration managing unit
135, and a distributed-information processing unit 136,
wherein

the service-demand processing unit 131 is configured to
analyze the service request to obtain user preference and
context information corresponding to information on the
service, send the user preference and context informa-
tion to the context acquiring-and-processing unit 133,
integrate merged service data, and send the integrated service
data to the service component to present the
integrated service data to the user;

the service request generally includes information on the
requested service and information on the user;

the merged service data are integrated generally by com-
bining data segments with the same service data header
together to form the complete service data;

the context acquiring-and-processing unit 133 is config-
ured to acquire the context information of a U-node in the
peripheral network environment, determine the UE
capability required by the service according to the user
preference and context information acquired by the ser-
vice-demand processing unit 131, and send the UE ca-
pability required by the service to the resource discovering
unit 132;

the context acquiring-and-processing unit 133 is further
configured to maintain a universal state simultaneously
in a distributed environment, for example, coordinated
states of an aggregated service on distributed U-nodes
involved in the service aggregation, consistency in ser-
vice transportation, and a persistent state;

the resource discovering unit 132 is configured to: when a
ubiquitous UE containing the UE middleware does not
have the UE capability required by the service, deter-
mine the required U-nodes in the peripheral network
environment according to the UE capability required by
the service and the context information of a U-node in the
peripheral network environment, and notify the
aggregation controlling unit 134 of the required
U-nodes;

specifically, the resource discovering unit 132 manages UE
capabilities provided by the ubiquitous UE containing
the UE middleware and by a U-node in the peripheral
network environment, and defines a specification con-
cerning a capability discovering mechanism via a tool
such as an Extensible Markup Language (XML); when the
ubiquitous UE containing the UE middleware does not
have the UE capability required by the service, the
resource discovering unit 132 searches, according to the
UE capability required by the service and the context
information of a U-node in the peripheral network envi-
nronment, the peripheral network environment for
U-nodes with the UE capability required by the service,
which U-nodes are distributed U-nodes and provide ser-
vice data of distributed information; then, the resource
discovering unit 132 notifies the aggregation controlling
unit 134 of the found U-nodes;

the resource discovering unit 132 is further configured to:
when the ubiquitous UE containing the UE middleware
has the UE capability required by the service, directly
notify the ubiquitous UE containing the UE middleware
to provide the service data;

the aggregation controlling unit 134 is configured to aggre-
gate the required U-nodes into the virtual UE;

specifically, the aggregation controlling unit 134 aggre-
gates the required U-nodes into the virtual UE according
to an aggregation policy, which aggregation policy may
be for service aggregation with an optimal configura-
tion, that is, for aggregating the required U-nodes into a
service aggregator (as a unified virtual UE) for the opti-
mal configuration; the condition for the optimal configura-
tion includes for example the QoS, the user satisfac-
tion, and the like;

the configuration managing unit 135 is configured to pro-
vide an interface required to configure the virtual UE for
the user, such that the user may perform service configura-
tion on the aggregated virtual UE according to his/her
own preference;

the distributed-information processing unit 136 is config-
ured to merge the service data provided by the virtual
UE, and send the merged service data to the service-
demand processing unit 131;

the distributed-information processing unit 136 is further
configured to provide support for an execution environ-
ment for transportation of a service in execution between
ubiquitous-UE nodes as well as management of a life-
cycle of a transportable service; and obtain information
such as a magnitude of a demand for service resources
according to interaction with the virtual UE; determine
whether the service is transported, copied, or dead
according to information such as the magnitude of the
demand for service resources, and thereby implement
optimized distribution and organization of the service
resources over U-nodes in the peripheral network envi-
nronment.

Furthermore, the functioning module 13 further includes
an initializing unit 137, a safety-privacy managing unit 138,
an event notifying unit 139, a reconstruction controlling unit
140, and an information-policy-library unit 141, wherein
the initializing unit 137 is configured to install and activate
data exchanging and interacting functions of each unit;
the safety-privacy managing unit 138 is configured to:
perform authentication for user access according to
information on the user in the service request; when the
user is authorized to access the requested service, send
the service request to the service-demand processing
unit 131; when the user is not authorized to access, or
when the service requested by the access intrudes on the
privacy of a manufacturer, turn down the service request,
and return a service-request-fail message;
the event notifying unit \texttt{139} is configured to: when the state of a ubiquitous UE in the peripheral network environment changes, notify the context acquiring-and-processing unit \texttt{133} to update the context information of a U-node in the peripheral network environment; and to reconstruct the aggregated virtual UE according to the context information of a U-node in the peripheral network environment updated by the context acquiring-and-processing unit \texttt{133};

the reconstruction may be done by information interaction with a U-node by IP or by a wireless-communication-module protocol;

specifically, the reconstruction controlling unit \texttt{140} incorporates a suitable replacing U-node and a reconfigured U-node into the aggregated virtual UE according to the updated context information of a U-node in the peripheral network environment to implement seamless service providing and adaptation to the environment;

the information-policy-library unit \texttt{141} is configured to provide data information such as aggregation policy information, and the user preference and context information corresponding to the information on the service.

Based on the aforementioned device, the disclosure further provides a service processing method for a ubiquitous UE. As shown in FIG. 2, the method includes steps as follows.

Step \texttt{101}: a UE middleware is embedded in a ubiquitous UE; the UE middleware performs data interaction with a U-node via a protocol layer for U-node network connectivity and a protocol layer for wide-area connectivity, and determines a UE capability required by a service by analyzing a service request.

Specifically, the UE middleware is embedded in the ubiquitous UE, the UE middleware performs data interaction with the U-node via the protocol layer for U-node network connectivity and the protocol layer for wide-area connectivity, and determines a UE capability required by a service by analyzing a service request.

In this step, when receiving the service request, the UE middleware performs authentication for user access according to information on the user in the service request; when the user is authorized, allows the user to access the requested service; when the user is not authorized, or when the service requested by the access intrudes on the privacy of a manufacturer, turns down the service request, and returns a service-request-fail message.

This step further includes that: when the state of a ubiquitous UE in the peripheral network environment changes, the UE middleware updates the context information of a U-node in the peripheral network environment.

Step \texttt{102}: the UE middleware determines required U-nodes in a peripheral network environment according to the UE capability required by the service.

Specifically, when the ubiquitous UE containing the UE middleware does not have the UE capability required by the service (for example, according to a downloading request, the ubiquitous UE containing the UE middleware does not have any service downloading capability), the UE middleware determines the required U-nodes in the peripheral network environment according to the UE capability required by the service and the context information of a U-node in the peripheral network environment.

This step further includes that: when the ubiquitous UE containing the UE middleware has the UE capability required by the service, the UE middleware directly notifies the ubiquitous UE containing the UE middleware to provide the service data.

Step \texttt{103}: the UE middleware aggregates the required U-nodes into a virtual UE.

Specifically, the UE middleware aggregates the required U-nodes into the virtual UE according to an aggregation policy, which aggregation policy may be for service aggregation with an optimal configuration, that is, for aggregating the required U-nodes into a service aggregator (as a virtual UE) for the optimal configuration; the condition for the optimal configuration includes for example the QoS, the user satisfaction, and the like.

Step \texttt{104}: the UE middleware integrates service data provided by the virtual UE, and presents the integrated data to a user via a service component.

Specifically, the UE middleware merges the service data provided by the virtual UE, integrates merged service data, and sends the integrated service data to the service component to present the integrated service data to the user.

The merged service data are integrated generally by combining data segments with the same service data header together to form the complete service data.

The method further includes that: when the state of a ubiquitous UE in the peripheral network environment changes, the UE middleware reconstructs the aggregated virtual UE according to updated context information of a U-node in the peripheral network environment.

With the solution, a ubiquitous UE in a ubiquitous network is allowed to acquire context information in time, and dynamical structural adjustment is performed on a virtual organization via aggregation and reconstruction of U-nodes in the peripheral network environment, achieving optimized resource utilization and adaptation to a dynamically changing environment, so as to provide the user with better services and optimal user experience.

What describe are merely preferred embodiments of the disclosure and are not intended to limit the scope of the disclosure.

The invention claimed is:

1. A User Equipment (UE) for constructing a graded resource model for peripheral network equipments around a user in a ubiquitous (U-) network by dividing UE peripheral equipments into U-nodes and U-gadgets according to capabilities and characteristics in use to form a hierarched structure in organization of ubiquitous equipments, the UE comprising a data transferring module and a functioning module, wherein

the data transferring module is configured to perform data interaction with a ubiquitous node (U-node) via a protocol layer for U-node network connectivity and a protocol layer for wide-area connectivity using a Transfer Control Protocol (TCP)/User Datagram Protocol (UDP), and to receive a service request of the user comprising information on a requested service and information on the user; and

the functioning module is configured to: determine a UE capability required by the service by analyzing the ser-
vice request; determine required U-nodes in a peripheral network environment according to the UE capability required by the service;
aggregate the required U-nodes into a virtual UE; integrate service data provided by the virtual UE, and present the integrated data to the user via a service component comprising input and output equipments.

2. The UE according to claim 1, further comprising an interaction-frame module configured to mask different communication modes and messages of various U-nodes, and provide a capability to select from and convert between different communication-interaction models for data interaction between the functioning module and a U-node via the data transfer module.

3. The UE according to claim 2, wherein the functioning module comprises a service-demand processing unit, a resource discovering unit, a context acquiring-and-processing unit, an aggregation controlling unit, a configuration managing unit, and a distributed-information processing unit, wherein
the service-demand processing unit is configured to: analyze the service request to obtain user preference and context information corresponding to the information on the service, send the user preference and context information to the context acquiring-and-processing unit, integrate merged service data, and send the integrated service data to the service component to present the integrated service data to the user;
the context acquiring-and-processing unit is configured to acquire the context information of a U-node in the peripheral network environment, determine the UE capability required by the service according to the user preference and context information acquired by the service-demand processing unit, and send the UE capability required by the service to the resource discovering unit;
the resource discovering unit is configured to: when the UE does not have the UE capability required by the service, determine the required U-nodes in the peripheral network environment according to the UE capability required by the service and the context information of a U-node in the peripheral network environment, and notify the aggregation controlling unit of the required U-nodes;
the aggregation controlling unit is configured to aggregate the required U-nodes into the virtual UE;
the configuration managing unit is configured to provide an interface required to configure the virtual UE for the user; and
the distributed-information processing unit is configured to merge the service data provided by the virtual UE, and send the merged service data to the service-demand processing unit.

4. The UE according to claim 3, wherein the aggregation controlling unit is configured to aggregate the required U-nodes into the virtual UE according to an aggregation policy for service aggregation with an optimal configuration.

5. The UE according to claim 3, wherein the resource discovering unit is configured to: when the UE has the UE capability required by the service, directly notify the UE to provide the service data.

6. The UE according to claim 3, wherein the functioning module further comprises an initializing unit, a safety-privacy managing unit, an event notifying unit, a reconstruction controlling unit, and an information-policy-library unit, wherein
the initializing unit is configured to install and activate data exchanging and interacting functions of each unit;
the safety-privacy managing unit is configured to: perform authentication for user access according to the information on the user in the service request, and when the user is authorized to access the requested service, send the service request to the service-demand processing unit;
the event notifying unit is configured to: when the state of a ubiquitous UE in the peripheral network environment changes, notify the context acquiring-and-processing unit to update the context information of a U-node in the peripheral network environment;
the reconstruction controlling unit is configured to reconstruct the aggregated virtual UE according to the context information of a U-node in the peripheral network environment updated by the context acquiring-and-processing unit; and
the information-policy-library unit is configured to provide aggregation policy information and the user preference and context information corresponding to the information on the service.

7. The UE according to claim 6, wherein the reconstruction controlling unit is configured to incorporate a suitable replacing U-node and a reconfigured U-node into the aggregated virtual UE according to the updated context information of a U-node in the peripheral network environment to implement seamless service providing and adaptation to the environment.

8. A service processing method for a User Equipment (UE) for constructing a graded resource model for peripheral network equipments around a user in a ubiquitous (U-) network by dividing UE peripheral equipments into U-nodes and U-gadgets according to capabilities and characteristics in use to form a hierarchical structure in organization of ubiquitous equipments, the method comprising:
performing, by the UE, data interaction with a ubiquitous node (U-node) via a protocol layer for U-node network connectivity and a protocol layer for wide-area connectivity using a Transfer Control Protocol (TCP)/User Datagram Protocol (UDP), and receiving a service request of the user comprising information on a requested service and information on the user;
determining, by the UE, a UE capability required by the service by analyzing the service request; determining required U-nodes in a peripheral network environment according to the UE capability required by the service; and aggregating the required U-nodes into a virtual UE; and
integrating, by the UE, service data provided by the virtual UE, and presenting the integrated data to the user via a service component comprising input and output equipments.

9. The method according to claim 8, further comprising:
when the UE receives the service request, performing, by the UE, authentication for user access according to the information on the user in the service request, and when the user is authorized, allowing the user to access the requested service.

10. The method according to claim 8, further comprising:
when the state of a ubiquitous UE in the peripheral network environment changes, reconstructing, by the UE, the aggregated virtual UE according to updated context information of a U-node in the peripheral network environment.

* * * * *