a2 United States Patent
He et al.

US008566372B2

US 8,566,372 B2
Oct. 22, 2013

(10) Patent No.:
(45) Date of Patent:

(54) METHOD AND DEVICE FOR DYNAMICALLY
LOADING RELOCATABLE FILE

(75) Inventors: Haijian He, Shenzhen (CN); Xiaohui
Wu, Shenzhen (CN); Wei Fan, Shenzhen
(CN)

(73) Assignee: ZTE Corporation, Shenzhen (CN)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

(21) Appl. No.: 13/258,431

(22) PCT Filed: Jul. 21, 2010

(86) PCT No.: PCT/CN2010/075368
§371 (),
(2), (4) Date: May 3, 2012

(87) PCT Pub. No.: 'WO02011/054223
PCT Pub. Date: May 12, 2011

(65) Prior Publication Data

US 2012/0209895 Al Aug. 16,2012
(30) Foreign Application Priority Data

Nov. 4,2009 (CN) ccooeevvcriennnene 2009 1 0210623

(51) Imt.ClL

GO6F 17/30 (2006.01)
(52) US.CL

USPC vt 707/825;711/124
(58) Field of Classification Search

USPC 707/825, 674, 802, 796, 634, 703, 758,

707/769, 622, 783, E17.005, E17.007,
707/E17.014, E17.032, E17.045; 717/124,
717/140, 147, 162; 719/328; 718/104;
703/10; 455/452.1, 186.1, 453,
455/FOR. 244
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,291,601 A * 3/1994 Sandscccovrenen 719/331
5,604,864 A * 2/1997 Nodacooeovvvvvennnne 711/201
(Continued)

FOREIGN PATENT DOCUMENTS

CN 101004681 A 7/2007

CN 101470619 A 7/2009

CN 101697131 A 4/2010
OTHER PUBLICATIONS

Adam et al.—*“Run-time Dynamic Linking for Reprogramming Wire
less Sensor Networks”—Proceedings of the 4th International Con-
ference on Embedded Networked Systems—SunSys 06 Nov. 1-3,
2006, ACM 2006 (pp. 15-28).*

(Continued)

Primary Examiner — John E Breene

Assistant Examiner — Anh Ly

(74) Attorney, Agent, or Firm — Oppedahl Patent Law Firm
LLC

(57) ABSTRACT

The disclosure provides a method for dynamically loading a
relocatable file, comprising: analyzing the relocatable file;
searching for a relocation section according to the informa-
tion obtained through the analysis; obtaining a relocation
target address after the relocation section is found and calcu-
lating an address to be relocated and a skipping distance;
determining whether the skipping distance exceeds a range of
a short skipping, and if the skipping distance does not exceed
the range of the short skipping, then writing the relocation
target address into the address to be relocated to perform
relocation loading; if the skipping distance exceeds the range
of'the short skipping, then adding a veneer code segment and
making the skipping whose distance exceeds the range of the
short skipping indirectly skip to the relocation target address
to perform relocation loading. Accordingly, the disclosure
provides a device for dynamically loading a relocatable file,
comprising: an analyzing module, a calculating module, a
searching module, a determining module, and a relocation
dynamic loading module. With the solution, dynamically
loading a relocatable file can be realized when the calling
distance of a function exceeds the range of the short skipping.

17 Claims, 3 Drawing Sheets

| Generating a system symbol table

“Analyzing and recombining the relocatable Tils, caloulating the 102
memary space required to load the coe of the dynamic
application file

‘Allocating the required memory space for loading the code and 103

calculating the iniisl address of sach code segment,reading the |/

section content of the relocatable file, and writing the content into
the memory space of the section i

Anglyzing the relocatable file to obtain informaticn, searching for
the external symbol address referenced by the dynamic
application flle

Searching for relocation sections, and calculating the address to
be relocated end skipping distance according to the relocation
information of the found relocation section

Determining whether

10

the skipping distance exceeds the range of the_ -Yes

short skipping
No
+

1
Filling the external symbol address referenced by the dynamic
application file into the address to be relocated, to perform
/ !

relocation dynamic loading

Adding the veneer code, transforming the short skipping
exceeding the range into an effective short skipping and a long
skipping, sklpping to the veneer code through the effective short
skipping, and skipping to the referenced extsrnal symbol address
through the long skipping instruction of the veneer code, to
perform the relocation dynamic loading

US 8,566,372 B2
Page 2

(56)

5,764,987
5,933,642
6,002,876
6,108,759
6,219,830
6,687,899
6,708,330
6,802,606
7,584,473
7,735,075
2002/0138748
2003/0140338
2003/0217197
2005/0136939
2005/0226406
2006/0277541
2007/0130565
2008/0163375
2012/0011367
2012/0204067

References Cited

U.S. PATENT DOCUMENTS

A *
A *
A *
A *
BL*
BL*
BL*
B2 *
B2 *
B2 *
Al*
Al*
Al*
Al*
Al*
Al
Al*
Al*
Al*
Al*

6/1998
8/1999
12/1999
8/2000
4/2001
2/2004
3/2004
10/2004
9/2009
6/2010
9/2002
7/2003
11/2003
6/2005
10/2005
12/2006
6/2007
7/2008
1/2012
8/2012

Eidtetal.ccoovvvvernnn 717/100
Greenbaum et al. 717/140
Davisetal.ccccuenenne. 717/162
Orcutt et al. . 711/173
Eidt et al. . . 717/139
Shann 717/162
Moberg et al. 717/158
Roffman et al. 351/159.08
Forinetal.ccccvennnnne 718/100
Fanetal.cccoccevvnne, 717/162
Hung . 713/190
Bowersetal. 717/162
Chanetal.cooeevvnnne, 709/331
Mountain et al. . 455/453
Forinetal.coccvvvvvvnrnnne 380/1
Sproul et al.

Fanetal.cccoccevvnne, 717/173
Savagaonkar et al. .. 726/26
Denisonccocvevenenne, 713/170
Matei etal.ccvevnn 714/47.1

OTHER PUBLICATIONS

Adam Dunkels, Niclas Finne, Joakim Eriksson, and Thiemo Voigt—
“Run-time dynamic linking for reprogramming wireless sensor net-
works”—Proceeding SenSys 06 Proceedings of the 4th international
conference on Embedded networked sensor systems—Nov. 1-3,
2006—pp. 15-28.*

Shann, Richard—* A relocation format for linking”—Furopean
Patent Application ~ EP1085410 A2—Application No.
EP20000307544 Publication Date:Mar. 21, 2001 Filing Date:Sep. 1,
2000—(pp. 1-23).*

International Search Report in international application No. PCT/
CN2010/075368, mailed on Nov. 25, 2010.

English Translation of the Written Opinion of the International
Search Authority in international application No. PCT/CN2010/
075368, mailed on Nov. 25, 2010.

Supplementary European Search Report in European application No.
10827837.5, mailed on May 23, 2013.

RealView Compilation Tools, Version 3.0, Linker and Utilities
Guide.

RealView Compilation Tools, Version 3.0, Assembler Guide.

* cited by examiner

U.S. Patent Oct. 22,2013 Sheet 1 of 3

Fig. 1

US 8,566,372 B2

101

Generating a system symbol table

h 4

Analyzing and recombining the relocatable file, calculating the
memory space required to load the code of the dynamic
application file

102

y

A
Allocating the required memory space for loading the code and
calculating the initial address of each code segment, reading the
section content of the relocatable file, and writing the content into
the memory space of the section correspondingly

103

A 4

104

Analyzing the relocatable file to obtain information, searching for
the external symbol address referenced by the dynamic
application file

!

Searching for relocation sections, and calculating the address to
be relocated and skipping distance according to the relocation
information of the found relocation section

105

NN

Determining whether
the skipping distance exceeds the range of the
short skipping

No
v

106

Yes

Filling the external symbol address referenced by the dynamic
application file into the address to be relocated, to perform
relocation dynamic loading

107

Adding the veneer code, transforming the short skipping
exceeding the range into an effective short skipping and a long
skipping, skipping to the veneer code through the effective short
skipping, and skipping to the referenced external symbol address
through the long skipping instruction of the veneer code, to
perform the relocation dynamic loading

108

U.S. Patent Oct. 22,2013 Sheet 2 of 3 US 8,566,372 B2

Fig. 2

201

Yes—l

Ending the code
relocating process

\ 209

Determining whether
the section header table of the relocatable
ile_has been traversed completely

No

202
Determining whether the traversed

«—No L. . .
section is the relocation section

Yes

etermining whether
the relocation item has been traversed
completely

No
\ 4 204

Reading the relocation information and calculating the address
to be relocated

205

Calculating skipping distance on the basis of different rules /
according to the type of the relocation items

206
Determining whether
the skipping distance exceeds the range of the
short skipping
Yes 207 No 208
adding the veneer code and directly modifying the code
indirectly skipping to relocation segment instruction to
target address perform relocation

U.S. Patent Oct. 22,2013 Sheet 3 of 3 US 8,566,372 B2

Fig. 3

Device for dynamically loading a relocatable
file

Analyzing module

—_————ee e e, ————

—_—_———ee e e e, —, e — ———

—_—_——e—ee— e e e, —————

Determining module

Relocation dynamic loading module

Adding unit
I

Transforming unit

US 8,566,372 B2

1
METHOD AND DEVICE FOR DYNAMICALLY
LOADING RELOCATABLE FILE

TECHNICAL FIELD

The disclosure relates to an embedded microkernel oper-
ating system and in particular to a method and device for
dynamically loading a relocatable file.

BACKGROUND

With the development of science and technology, mobile
phones show a personal computerized development trend,
which requires more and more dynamic application files.
Mobile phones are generally divided into smart phones and
feather phones. Smart phones, such as wince operating sys-
tem and ulinux operating system, etc, basically realize
dynamic loading technology, such as a dynamic link library
of'a Windows operating system or a dynamically shared file
of'a linux operating system which can be dynamically loaded
on a Personal Computer (PC); while most of the feather
phones are developed based on the embedded microkernel
operating system, and dynamic loading technology has not
yet been implemented on most of the embedded operating
systems.

So far, the market share of feather phones is still high, and
there are generally two application development modes for
feather phones: one mode is to use JAVA language, and the
other mode is statically linked to a version. Wherein JAVA is
an explanatory language and slow in operating speed, and
meanwhile requires support from JAVA virtual machine;
while for compiling and generating an executable file by
static link between a traditional application and a mobile
phone version, the larger the file, the larger the required
capacity of the hardware resource, such as the Random
Access Memory (RAM) or the nonvolatile or NOR FLLASH,
and since the code will be frequently modified in the debug-
ging process, the overall mobile phone version has to be
re-linked, burned and loaded each time that the code is modi-
fied, thus modifying the code takes even more time than
debugging the code, which seriously affects the efficiency of
application development and debugging. In addition, when
the code is directly run on a mobile phone having NOR
FLASH, the above phenomenon is even more serious since
the burning time is long, and the efficiencies of application
development and debugging are particularly low. Meanwhile,
the telecom operators have demand on dynamically upgrad-
ing an application, while the statically linked application
cannot be dynamically upgraded.

Presently, the dynamic linking technology is implemented
in the microkernel operating system, which improves the
software development efficiency, the loading is performed as
required in order to save hardware resources, and new func-
tions can be added to a mobile phone at any time. Wherein the
dynamic loading process mainly comprises three processes:
calculating and allocating memory required for loading the
code, symbol analyzing and code relocating. However, in the
prior art, during the relocation process, when the address
distance between a function caller and a callee is too far and
exceeds a range of the short skipping, it will cause failure in
dynamic loading, or error in dynamic loading of the dynamic
application file.

SUMMARY

In view of the above mentioned, the disclosure mainly aims
to provide a method and device for dynamically loading a

20

25

30

35

40

45

50

55

60

65

2

relocatable file, so that dynamically loading of the relocatable
file can be realized when the calling distance of the function
exceeds the range of the short skipping.

To achieve the above purpose, the disclosure provides a
method for dynamically loading a relocatable file, compris-
ing: analyzing the relocatable file, searching for a relocation
section according to information obtained through the analy-
sis, and obtaining a relocation target address after the reloca-
tion section is found and calculating an address to be relo-
cated and a skipping distance; and determining whether the
skipping distance exceeds a range of a short skipping, if the
skipping distance does not exceed the range of the short
skipping, then filling the relocation target address into the
address to be relocated to perform relocation loading; if the
skipping distance exceeds the range of the short skipping,
then adding a veneer code and making a skipping exceeding
the range of the short skipping skip indirectly to the relocation
target address to perform relocation loading.

Wherein before analyzing the relocatable file, the method
may further comprise: generating a system symbol table;
recombining the relocatable file according to attributes of
sections of the relocatable file, calculating and allocating
memory space required for loading a code of a dynamic
application file, and calculating an initial address of each code
segment, reading section content of the relocatable file, and
writing the content into the allocated memory space of the
section correspondingly; wherein recombining the relocat-
able file comprises: ranking sections of three segments of
TEXT, DATA and BSS to which the relocatable file belongs in
an ascending order based on section names and section serial
numbers, and ranking in the ascending order based on the
section names is preferred.

In the above method, obtaining the relocation target
address may comprise: analyzing the relocatable file to obtain
a section header of a symbol section, traversing a section
header table of the relocatable file according to a sh_type field
of'the section header, and searching for the symbol section of
the relocatable file; determining whether a symbol of the
relocatable file is an undefined symbol according to a
st_shndx field of a symbol item of the symbol section; when
the symbol of the relocatable file is an undefined symbol,
searching the system symbol table to obtain a symbol address
of'the undefined symbol, and using the symbol address of the
undefined symbol as an external symbol address referenced
by the dynamic application file; the external symbol address
referenced by the dynamic application file is the relocation
target address.

Wherein adding the veneer code may comprise: generating
the veneer code, and filling a long skipping instruction and the
referenced external symbol address into the veneer code,
respectively; filling an initial address of the veneer code into
the address to be relocated to form an effective short skipping,
an effective short skipping instruction directs to the veneer
code; making the skipping exceeding the range of the short
skipping skip indirectly to the relocation target address com-
prises: skipping to the veneer code through the effective short
skipping, then skipping to the referenced external symbol
address through a long skipping of the veneer code.

In the method, calculating the address to be relocated may
comprise: obtaining an offset of a relocated position in an
affiliated section according to relocation information; and
obtaining the address to be relocated by adding the obtained
offset to an initial address of the affiliated section.

wherein after the relocation section is found, the method
may further comprise: determining whether relocation items
have been traversed completely, and if the relocation items
have not been traversed completely, then obtaining the relo-

US 8,566,372 B2

3

cation target address; if the relocation items have been tra-
versed completely, then determining whether the section
header table has been traversed completely, and if the section
header table has not been traversed completely, keeping on
searching to determine whether there is relocation section; if
the section header table has been traversed completely, end-
ing the relocatable dynamic loading process.

To realize the above method, the disclosure further pro-
vides a device for dynamically loading a relocatable file,
comprising: an analyzing module, a calculating module, a
searching module, a determining module and a relocation
dynamic loading module; wherein the analyzing module is
configured to analyze the relocatable file; the searching mod-
ule is configured to search for a relocation section according
to information obtained by the analyzing module, and obtain
a relocation target address; the calculating module is config-
ured to calculate an address to be relocated and a skipping
distance; the determining module is configured to determine
whether the skipping distance exceeds a range of a short
skipping, and inform a result of determining to a relocation
dynamic loading module; the relocation dynamic loading
module is configured to fill the relocation target address into
the address to be relocated; and add a veneer code, transform
a short skipping exceeding the range of the short skipping into
an effective short skipping and a long skipping, skip to the
veneer code through the effective short skipping, and then
skip to the relocation target address to perform relocation
dynamic loading.

Wherein the device may further comprise: a recombining
module and a memory dividing module; wherein the recom-
bining module is configured to rank sections of three seg-
ments of TEXT, DATA and BSS to which the relocatable file
belongs in an ascending order based on section names and
section serial numbers, and ranking in the ascending order
based on the section names is preferred; the memory dividing
module is configured to calculate and divide memory space
required for loading a code of a dynamic application file, and
read section content of the relocatable file, and write the
content into the memory space of the section correspond-
ingly; the calculating module is further configured to calcu-
late initial addresses of each code segment and each section.

The device may further comprise: a first traversing module
and a second traversing module; wherein the first traversing
module is configured to traverse a section header table, and
inform the searching module when the traversal is completed;
the second traversing module is configured to traverse a relo-
cation item, and inform the calculating module when the
relocation item is started to be traversed, and inform the first
traversing module when the relocation item is not traversed;
the searching module is further configured to inform the
second traversing module when the relocation section is
found.

Wherein the relocation dynamic loading module may com-
prise: an adding unit configured to add the veneer code; a
transforming unit configured to transform the short skipping
exceeding the range of the short skipping into an effective
short skipping and a long skipping, skip to the veneer code
through the effective short skipping, and skip to a referenced
external symbol address through a long skipping instruction
of the veneer code.

It can be seen from the above technical solution that,
through the method for dynamically loading the relocatable
file provided by the disclosure, the problem of dynamic load-
ing fails due to that the address distance between the function
caller and the callee is too far and exceeds the range of the
short skipping in the process of dynamically loading the
relocatable file is solved. That is to say, when the relocatable

20

25

30

35

40

45

50

55

60

65

4

file is dynamically loaded, the disclosure transforms a short
skipping exceeding the range of the short skipping into an
effective short skipping and a long skipping, so that dynami-
cally loading the relocatable file could be realized when the
calling distance of the function exceeds the range of the short
skipping.

In addition, the disclosure adopts a mode in which the
applications and mobile phone platforms are developed inde-
pendently, such that when a dynamic application file needs to
be modified, it only needs to independently compile the
dynamic application file which needs to be modified without
performing operations of re-fabricating, burning, loading and
the like on the platform version. In this way, a large amount of
time is saved in order to concentrate on debugging the appli-
cation itself, which greatly improves the application develop-
ment efficiency.

The application and mobile phone platforms are linked at
the PC side originally, now they are linked in the mobile
phone by the disclosure, which greatly benefits the expansion
of'the functions of the mobile phone platform, such as updat-
ing the dynamic application files. Furthermore, requirements
in many aspects can be satisfied through upgrading the exist-
ing dynamic application files during the operation, for
example, updating/downloading the latest dynamic applica-
tion files.

To sum up, through the method and device for dynamically
loading the relocatable file according to the disclosure, the
software development efficiency can be improved, the hard-
ware resource is saved due to that the loading is performed as
required, and the requirements of the telecom operators are
met; furthermore, new functions can be added to a mobile
phone at any time. In particular, when the skipping distance
exceeds the range, a short skipping exceeding the range can
be transformed into an effective short skipping and a long
skipping to realize relocatable dynamic loading.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a schematic flowchart illustrating the imple-
mentation of a method for dynamically loading a relocatable
file according to the disclosure;

FIG. 2 shows a schematic flowchart illustrating code relo-
cation according to the disclosure;

FIG. 3 shows a schematic diagram illustrating the structure
of'a device for dynamically loading a relocatable file accord-
ing to the disclosure.

DETAILED DESCRIPTION

The basic thought of the disclosure lies in that: transform-
ing a short skipping exceeding the range of the short skipping
into an effective short skipping and a long skipping in order to
realize dynamic loading of the relocatable file when the func-
tion calling distance exceeds the range of the short skipping.

It should be pointed out that in the disclosure, the function
calling distance during the skipping process is called skipping
distance.

It should be illustrated that most of the embedded devices
adopted by the disclosure use the Advanced RISC (Reduced
Instruction Set Computing) Machine (ARM) processor, the
dynamically loaded relocatable file uses the linking view of
the Executable and Linking Format (ELF), and uses the soft-
ware in ELF format during the debugging operation. Wherein
the relocatable file is the target file compiled by the ARMCC
compiler at the PC side, comprising the target file suitable for
being partially linked with other target files. The relocatable
file has a plurality of formats, such as Portable Executable

US 8,566,372 B2

5
(PE) file format of Windows, ELF file format. In this embodi-
ment, the format of the relocatable file uses ELF format.

Here, it can be known from the architecture of ARM that,
the ARM linker (ARMLINK) provides some small segments
of codes in the linking process for realizing transformation
from ARM state to thumb state, and realizing long distance
skipping. Generally, these small segments of codes are called
state switching codes, such as veneer code. Since the relocat-
able target files generated by different compilers may be
different, that is to say, the veneer code is related to the
compiler, for example: GNU Compiler Collection (GCC)
compiler has a -mlong option, which can directly compile a
skipping instruction into a long skipping. However, an
ARMCC compiler of lower version does not have a similar
attribute, the generated relocatable files are all short skipping
instructions, and the range of the short skipping is between
+32M to -32M, a skipping can only be transformed into a
long skipping as required in the ARMLINK linking process.

The memory address of the dynamic loading file is gener-
ally allocated in the memory of the mobile phone system
heap, and the relocatable file is generated by the ARMCC
compiler. However, when the loading relocation target
address is too far from the address of the system code, then in
the relocation process, the distance between the function
caller and the callee may exceed the range of the short skip-
ping, thus lead to failure in the relocation. Therefore, in the
relocation process, it is necessary to transform a short skip-
ping exceeding the range of the short skipping into a long
skipping instruction, i.e. generating a veneer code, wherein
the veneer code plays a role of realizing a long distance
skipping. It can beknown from the ARM architecture that, the
long skipping can be realized by directly assigning a value to
a PCregister, but directly changing the short skipping instruc-
tion to use the address of immediate data (i.e. symbol) would
cause a problem to the PC assignment instruction: every
immediate data is obtained by circularly shifting an eight-bit
constant rightwards for even bits, and not every 32-bit con-
stant is a legal immediate data. Then, an indirect method is
required for transforming a short skipping exceeding a range
into an effective short skipping and a long skipping. There-
fore, the disclosure adopts the veneer code to realize the long
skipping, wherein the veneer code occupies two assembly
instructions (i.e. eight bytes), the first four bytes are used for
storing the long skipping instruction, and the last four bytes
are used for storing the external symbol address referenced by
the dynamic application file (i.e. the relocation target
address). In this way, when relocating an external symbol
exceeding the short skipping distance range, dynamic loading
is realized by skipping to the veneer code through the effec-
tive short skipping, and skipping to the external symbol
address referenced by the dynamic application file through
the long skipping instruction of the veneer code. Wherein the
effective short skipping refers to the skipping not exceeding
the range of the short skipping.

To make the purposes, characteristics and advantages of
the disclosure more obvious and easy to be understood, the
disclosure is further described below in detail with reference
to accompanying drawings and specific embodiments.

The realization of the relocatable dynamic loading of the
disclosure is equivalent to the solution of providing a simpli-
fied loading linker in the embedded microkernel operating
system of the mobile phone, such that the development mode
and function calling relation of the dynamic application file
substantially consistent with that of the static application,
without modifying the dynamic application file. Here, the

20

25

30

35

40

45

50

55

60

65

6

method for dynamically loading a relocatable file according
to the disclosure is illustrated in FIG. 1, which mainly com-
prises the following steps.

Step 101, generating a system symbol table;

wherein the main components of the system symbol table
comprise: a symbol name and a symbol address, and the
system symbol table is generated by a mobile phone platform
(hereinafter referred to as platform), and its generation pro-
cess comprises: binding the symbol name and symbol address
which are provided outwardly by the static version together to
constitute a static array; when the system of the mobile phone
is initialized, the static array is organized in the way of a hash
table to be inquired during dynamically loading of the
dynamic application file.

Wherein the generation of the static array can be generated
by an array generation tool through two compilations,
namely: during the first compilation, setting the static array to
be null, and compiling and linking the platform version to
generate an executable file having symbol information, scan-
ning the executable file to obtain the symbol name, and then
generating the static array; when performing the second com-
pilation, obtaining the symbol address through a program-
ming grammar, filling the symbol address into the static array
by the compiler; and then, when the system of the mobile
phone is initialized, the static array is stored in the form of a
hash table to facilitate subsequent symbol searching.

Step 102, analyzing and recombining the relocatable file,
calculating the memory space required to load the code of the
dynamic application file;

in this step, the device for dynamically loading the relocat-
able file analyzes the relocatable file according to the fields of
the section header, such as sh_type or the like, and conforms
to the ELF file format; extracts information such as operation,
relocation or the like obtained through analysis and write the
information into the memory, performs recombination
according to the information such as the attribute of the sec-
tion of the relocatable file, and calculates the memory space
required for loading the code of the dynamic application file.

Note that, the executable file, such as the dynamic appli-
cation file, consists of three segments: a TEXT segment, a
DATA segment and an uninitialized data segment (Block
Started by Symbol (BSS)), wherein the TEXT segment is
used for storing the dynamic application file code determined
during compiling and is in read-only format; the DATA seg-
ment is used for storing data that can be determined at the
compiling stage and is readable and writable, and the DATA
segment is generally referred to as static memory area, in
which global variables and static variables assigned with
initial values, and the constant are stored; the BSS segment is
used for storing the defined global variables and static vari-
ables, which are not assigned with initial values.

The main recombination processes are as follows: the relo-
catable file adopts the linking view of the ELF, thus firstly, the
type of the affiliated segment is determined according to the
sh_type and sh_flag fields of the section header table of the
relocatable file, and then the section header tables in the
TEXT segment, the DATA segment and the BSS segment are
ranked in ascending order based on a certain order, such as the
section names and the section serial numbers, and the section
names is preferred, that is, if the section names are the same,
the section header tables are then ranked in an ascending
order based on the section serial numbers. Then, the memory
size required by each code segment and the total memory
sizes are calculated, according to the section alignment con-
straint sh_addralign field and the section size sh_size field of
the section header table. Wherein the section header table is
determined by the ELF file format, and comprises a plurality

US 8,566,372 B2

7

of section headers, and is copied from the relocatable file to
the memory, and will be released after the relocation is com-
pleted.

It should be pointed out that, since the cascade ways of
different linkers or different linker versions may be different,
in order to facilitate debugging of the dynamic application file
without affecting the operation of the dynamic application
file, it is necessary that the way in which the sections in the
TEXT segment, the DATA segment and the BSS segment are
ranked should be consistent with the cascade way of the linker
at the PC side. Here, the purpose of cascading the section
header tables within the TEXT segment according to a certain
order is to be consistent with the order generated by the linker
at the PC side, while the linker at the PC side ranks the DATA
segment and the BSS segment according to the section serial
numbers.

Step 103, allocating the required memory space for loading
the code and calculating the initial address of each code
segment, reading the section content of the relocatable file,
and writing the section content into the allocated memory
space of the allocated section correspondingly;

here, after the device for dynamically loading the relocat-
able file calculates the memory space required for loading the
code, the device allocates the required memory space for
loading the code, and calculates the initial address of each
code segment and each section according to the information,
such as the size, the order and the address of each section or
the like. The section contents belonged to the TEXT segment,
DATA segment and BSS segment are directly read from the
relocatable file to the memory space of the section according
to the sh_offset field and sh_size field of the section header
table.

Step 104, analyzing the relocatable file to obtain informa-
tion, searching for the external symbol address referenced by
the dynamic application file;

here, the information comprises: the string information, the
symbol information, the section information and the reloca-
tion information; wherein the relocation information is deter-
mined by the ELF file format, and the external symbol
address referenced by the dynamic application file is the
relocation target address.

The ELF file specifies that, besides a normal section, the
relocatable file currently includes only one symbol section,
through which the symbol of the relocatable file can be found,
and the symbol is a function or a variable used by the dynamic
application file. Specifically, the symbol section of the relo-
catable file is searched by analyzing the relocatable file to
obtain the symbol section header, and traversing the section
header table according to the sh_type field of the section
header; the sh_link field of the symbol section header indi-
cates the string section index corresponding to the symbol;
the string index is used for locating the symbol name in the
string section, and the position of the corresponding string
section in the file can be found in the section header table
through the string section index, and then the string section is
copied into the memory, the string section will be used in the
relocation process, and the string section is released and
deleted after being used. The symbol section consists of a
plurality of symbol items, wherein the st_shndx field of the
symbol item indicates the section where the symbol definition
is located, and whether the symbol is undefined or defined can
be determined according to the st_shndx field:

1) for the defined symbol, obtaining the symbol address
according to the initial address of the section where the sym-
bol definition is located and the st_value field of the symbol
item, and adding the symbol information to the hash symbol
table of the dynamic application file, i.e. the dynamic appli-

20

25

30

35

40

45

50

55

60

65

8

cation file symbol table, for the subsequent function calling of
the dynamic application file; wherein the symbol informa-
tion, which comprises symbol name and symbol address, is
organized in the dynamic loading process; for example, when
it is required to call the interface provided outwardly by the
dynamic application file, the function address of the dynamic
application file can be obtained by searching the dynamic
application file symbol table through the function name (i.e.
the symbol name). Here, the defined symbols are divided into
local symbols and global symbols, which can be distin-
guished according to the st_info field of the symbol item;
furthermore, during the loading, only the global symbol may
be add to the dynamic application file symbol table, since the
local symbol has less impact on the loading, operating and
debugging of the dynamic application file;

2) for the undefined symbol, the symbol address of the
undefined symbol is obtained through searching the system
symbol table; the undefined symbol is the external symbol
referenced by the dynamic application file; here, the unde-
fined symbol is a key of relocation, if the undefined symbol
cannot be found, the loading of the relocatable file fails, and
even if the loading continues and the loading is success, it is
not sure that the dynamic application file would run correctly.

3) establishing a symbol array in the memory according to
the number of symbol items, binding the symbol index with
the calculated or found symbol address and symbol type, and
the symbol index is in one-to-one correspondence with the
array subscript, which can be used in subsequent relocation.
High 24-bit of r_info field of the relocation item, i.e.
r_info>>8, represents the index of the symbol corresponding
to the relocation item in the symbol section, and the absolute
address of the symbol can be found by searching the symbol
array through the index; the symbol array will be released
after the relocation is completed, and the symbol array is the
form of expression of the symbol section in the memory.

Step 105, searching for relocation sections, and calculating
the address to be relocated and skipping distance according to
the relocation information of the found relocation section;

wherein the address to be relocated provides the absolute
address applicable to the relocation action, and the relocation
refers to a process of connecting a symbol reference with a
symbol definition.

Note that, the address to be relocated can be calculated
through the following way: obtaining the offset of the relo-
cated position in the affiliated section according to the relo-
cation information; adding the obtained offset to the initial
address of the affiliated section, such that the address to be
relocated is obtained.

Step 106, determining whether the skipping distance
exceeds the range of the short skipping, and if the skipping
distance does not exceed the range of the short skipping, then
executing step 107; if the skipping distance exceeds the range
of' the short skipping, then executing step 108.

Step 107, filling the external symbol address referenced by
the dynamic application file into the address to be relocated,
to perform relocation dynamic loading;

during the dynamic loading process, the code relocation
refers to a process of linking the symbol reference with the
symbol address, for example: when the program calls a func-
tion, relevant calling instruction must transmit a control to an
appropriate target execution address. After finding the sym-
bol address of the undefined symbol in the system symbol
table, filling the symbol address of the undefined symbol into
the address to be relocated. Wherein the undefined symbol is
the external symbol referenced by the dynamic application
file, and the symbol address of the undefined symbol is the
address of the external symbol referenced by the dynamic

US 8,566,372 B2

9

application file. In this embodiment, the symbol address of
the undefined symbol adopts its absolute address, which is the
target address for relocation as well.

Step 108, adding the veneer code, transforming the short
skipping exceeding the range into an effective short skipping
and a long skipping, skipping to the veneer code through an
effective short skipping, and skipping to the referenced exter-
nal symbol address through the long skipping instruction of
the veneer code, and performing relocation dynamic loading.

In the relocation process, if there is short skipping exceed-
ing the range, then it is required to transform the short skip-
ping instruction exceeding the range into an effective short
skipping instruction and a long skipping instruction, i.e. gen-
erating a veneer code, wherein the veneer code occupies two
assembly instructions, i.e. eight bytes, the first four bytes are
used for storing the long skipping instruction, and the last four
bytes are used for storing the actual relocation target address,
i.e. the absolute address of external symbol referenced by the
dynamic application file. In this way, a long distance skipping
may be realized by causing the effective short skipping
instruction to direct to the veneer code, and skipping to the
target address through the long skipping instruction of the
veneer code, so that the dynamic loading is realized. Wherein
the relocation process comprises the following two solutions:

1. traversing the section header table twice: during the first
traversing, accumulating the number of times of exceeding
the range of the short skipping, and then allocating required
spaces for all veneer codes; during the second traversing,
performing relocation, relocating the short skipping exceed-
ing the range of the short skipping to the address where the
long skipping instruction of the corresponding veneer code is
located, and filling the veneer code.

II. traversing the section header table once, allocating
larger space to the veneer code according to the number of
external symbols referenced by the dynamic application file,
instead of making a precise statistics on the number of times
of exceeding the range of the short skipping at this time, and
relocating the short skipping exceeding the range of the short
skipping to the address where the long skipping instruction of
the corresponding veneer code is located, and filling the
veneer code.

Wherein the veneer code is not only applicable to the long
distance skipping, but also applicable to the switching
between the ARM state and the thumb state. When the veneer
code is applied to the switching between the ARM state and
the thumb state, the required space of the code segment
remains unchanged, but the content of the code segment is
different.

Compared with the relocation solution I, the relocation
solution II is preferred for the following reasons: in the solu-
tion I, it is required to traverse the section header table twice,
which takes more time. In addition, as long as the same
symbols are referenced, the generated veneer codes are the
same, in the solution II the same veneer codes are combined,
while in the solution I the same veneer codes are not com-
bined and the same symbol may be referenced several times,
resulting in many repeated veneer codes. Therefore, com-
pared with solution I, solution I uses more spaces.

The code relocation process provided by the relocation
solution II will be further described below with reference to
FIG. 2, which mainly comprises the following steps.

Step 201, determining whether the section header table of
the relocatable file has been traversed completely, if not, then
executing step 202; otherwise, executing step 209;

wherein the relocation section is searched through travers-
ing all of the items in the section header table of the relocat-
able file. Here, the relocation section refers to a normal sec-

20

25

30

35

40

45

50

55

60

65

10

tion in the relocatable file whose attribute is relocatable.
Wherein the relocation section only corresponds to one code
section, consists of a plurality of relocation items, and used
for storing the information of modifying other section con-
tents, i.e. providing the information on how to modify the
code section.

Step 202, determining whether the traversed section is the
relocation section, if it is not the relocation section, then
returning to step 201; otherwise, executing step 203;

the device for dynamically loading the relocatable file can
find a relocation section through traversing the section header
table according to the sh_type field of the section header,
wherein the relocation section may make reference to other
two sections: symbol section and the section to be modified;
the data relation for performing relocation can be provided by
the sh_info field and sh_link field in the members of the
relocation section header, the sh_info field of the relocation
section header indicates the applicable section index, and the
sh_link field indicates the corresponding symbol section
index. Because the current ELF file format specifies that one
ELF file has only one symbol section, the sh_link field may
not be used.

Step 203, determining whether the relocation item has been
traversed completely, if yes, then returning to step 201; oth-
erwise, executing step 204;

determining whether the relocation items have been tra-
versed completely according to the number of the relocation
items in the relocation section. Wherein the number of the
relocation items in the relocation section is calculated accord-
ing to the size of the relocation section and the size of the
relocation item recorded in the relocation section header, i.e.:

the number of the relocation items=the size of the
relocation section/the size of the relocation item

the specific calculation method thereof may make refer-
ence to relevant specifications of the ELF file format. Here,
the relocation item is the information included in the relocat-
able file on how to modify its section content, so as to allow
the executable file and the shared target file to store the correct
information of program mapping of the process.

Step 204, reading relocation information, and calculating
the address to be relocated;

the relocation entries of relocation item describe how to
modify the subsequent instructions and data fields, including
members of r_offset field, r_info field and the like. Wherein
the r_offset field provides the position applicable to the relo-
cation action, and provides the offset of the first byte of the
affected storage unit. For a relocatable file, the value of r_oft-
set is the byte offset starting from the section header to the
storage unit to be affected by the relocation. For an executable
file or a shared target file, its value is the virtual address of the
storage unit affected by relocation, while the r_info field
provides the symbol table index to be relocated, and the
relocation type to be performed. For example, the relocation
item of a calling instruction may comprise the symbol table
index of the called function.

In this embodiment, the offset of the relocated position in
the affiliated section is obtained according to the relocation
information. Ther_offset field of the relocation item indicates
the offset of the relocated position in the affiliated section, and
the address to be relocated can be located through combining
the offset with the initial address of the affiliated section.
Wherein the affiliated section is the section to be relocated.

Here, the r_info field of the relocation item has two mean-
ings and occupies four bytes. Wherein the low 8-bit of the
r_info field, i.e. (unsigned char) r_info, represents the type of
relocation item, the types of different relocation items have

US 8,566,372 B2

11

different relocation rules, and further details can refer to
relevant rules of the ELF format. High 24-bit of r_info field,
i.e.r_info>>8, represents the index of the symbol correspond-
ing to relocation item in the symbol section, and the absolute
address of the symbol can be found through is the index of the
symbol section. The absolute address is the address with
respect to 0, and the function calling is realized through
address skipping.

Step 205, calculating skipping distance based on different
rules according to the type of the relocation item;

the relocation type provides the value to be modified and
the method on how to calculate the modified value, wherein
for the type of the relocation item and the process of calcu-
lating the skipping distance, please refer to relevant specifi-
cations of the ELF file format, which will not be described in
detail here.

Step 206, determining whether the skipping distance
exceeds the range of the short skipping, if the skipping dis-
tance exceeds the range of the short skipping, then executing
step 207; otherwise, executing step 208;

in this embodiment, the range of the short skipping ranges
from +32 M to -32 M.

Step 207, adding veneer code, indirectly skipping to the
relocation target address, and then returning to step 203;

wherein the veneer code space adds veneer code through
one time allocation such as using pseudo codes: pc,=pSy-
mAdrs; ded pSymAdrs or the like according to the number of
external reference symbols, the initial address of veneer code
is filled into the address to be relocated to form an effective
short skipping, and the long skipping instruction and refer-
enced external symbol absolute address are filled into the
veneer code, respectively. In this way, the effective short
skipping instruction directs to the veneer code, and further
indirectly skips to the referenced external symbol address
(i.e. the relocation target address) through the long skipping
instruction of the veneer code. Wherein the number of exter-
nal reference symbols can be accumulated when determining
whether it is a defined symbol or an undefined symbol, and
the undefined symbol is the referenced external symbol.

Note that, in order to save the space, in this step, searching
may be firstly performed to determine whether there is a
generated veneer code, if the generated veneer code exists,
then the initial address of the veneer code will be filled into the
address to be relocated without generating the veneer code.

Step 208, directly modifying code segment instruction to
perform relocation, then returning to step 203;

wherein the code segment instruction refers to the instruc-
tion held by the relocation target address. When the skipping
distance does not exceed the range of the short skipping,
directly moditying code segment instruction refers to filling
the referenced external symbol address into the address to be
relocated. Please refer to the specifications of ELF file format
for detailed filling manner.

Step 209, ending the code relocating flow.

For simplicity, each of the above embodiments is expressed
as a combination of a series of actions. However, persons
skilled in the art would know that the disclosure is not limited
to the order of the described actions as some steps may be
performed in an alternative order or simultaneously accord-
ing to the disclosure.

In order to implement the above method, the disclosure
further provides a device for dynamically loading a relocat-
able file, as shown in FIG. 3, the device comprises: an ana-
lyzing module, a searching module, a calculating module, a
determining module and a relocation dynamic loading mod-
ule; wherein

20

25

30

35

40

45

50

55

60

65

12

the analyzing module is configured to analyze the relocat-
able file;

the searching module is configured to search for a reloca-
tion section according to the information obtained by the
analyzing module, and obtain a relocation target address;

the calculating module is configured to calculating an
address to be relocated and a skipping distance;

the determining module is configured to determine
whether the skipping distance exceeds a range of a short
skipping, and inform a result of determining to the relocation
dynamic loading module;

the relocation dynamic loading module is configured to fill
the relocation target address into the address to be relocated;
and add a veneer code, transform a short skipping exceeding
the range of the short skipping into an effective short skipping
and a long skipping, skip to the veneer code through the
effective short skipping, and skip to the relocation target
address through the long skipping instruction of the veneer
code, and perform the relocation dynamic loading.

The above device further comprises: a recombining mod-
ule and a memory dividing module; wherein

the recombining module is configured to rank the sections
of the three segments of TEXT, DATA and BSS to which the
relocatable file belongs in an ascending order based on the
section names and the section serial numbers, and ranking in
the ascending order based on the section names is preferred;

the memory dividing module is configured to calculate and
divide memory space required for loading a code of a
dynamic application file, and read section content of the
relocatable file, and write the content into the memory space
of the section correspondingly;

correspondingly, the calculating module is further config-
ured to calculate initial addresses of each code segment and
each section.

The device further comprises: a first traversing module,
and a second traversing module; wherein

a first traversing module is configured to traverse a section
header table, and inform the searching module when the
traversal is completed;

a second traversing module is configured to traverse a
relocation item, and inform the calculating module when the
relocation item is started to be traversed, and inform the first
traversing module when the relocation item is not traversed;

correspondingly, the searching module is further config-
ured to inform the second traversing module when the relo-
cation section is found.

Wherein the relocation dynamic loading module com-
prises: an adding unit configured to add the veneer code; a
transforming unit configured to transform the short skipping
exceeding the range of the short skipping into an effective
short skipping and a long skipping, skip to the veneer code
through the effective short skipping, and skip to a referenced
external symbol address through a long skipping instruction
of the veneer code.

Inthe above embodiments, the description to each embodi-
ment has different emphasis, and those not described in detail
in a certain embodiment may make reference to relevant
descriptions of other embodiments. The above are only the
preferred embodiments of the disclosure for describing and
interpreting the disclosure and are not intended to limit the
protection scope of the disclosure. Within the spirit and pro-
tection scopes of the claims of the disclosure, any modifica-
tions or equivalent replacements shall fall within the protec-
tion scope of the disclosure.

US 8,566,372 B2

13

The invention claimed is:
1. A method for modifying a dynamic application file in a
mobile terminal, comprising:
downloading another dynamic application file, which is a
relocatable file, to the mobile terminal;
dynamically loading the relocatable file, including:
analyzing the relocatable file, searching for a relocation
section according to information obtained through the
analysis, and obtaining a relocation target address after
the relocation section is found and calculating an
address to be relocated and a skipping distance;
determining whether the skipping distance exceeds a range
of a short skipping, if the skipping distance does not
exceed the range of the short skipping, then filling the
relocation target address into the address to be relocated
to perform relocation loading; if the skipping distance
exceeds the range of the short skipping, then adding a
veneer code and making a skipping exceeding the range
of the short skipping skip indirectly to the relocation
target address to perform relocation loading; and
wherein adding the veneer code comprises:
generating the veneer code, and filling a long skipping
instruction and the external symbol address which is
referenced by the dynamic application file into the
veneer code, respectively; filling an initial address of the
veneer code into the address to be relocated to form an
effective short skipping, an effective short skipping
instruction directs to the veneer code; and making the
skipping exceeding the range of the short skipping skip
indirectly to the relocation target address comprises:
skipping to the veneer code through the effective short
skipping, then skipping to the referenced external sym-
bol address through a long skipping of the veneer code.
2. The method according to claim 1, further comprising:
before analyzing the relocatable file:
generating a system symbol table; recombining the relo-
catable file according to attributes of sections of the
relocatable file, calculating and allocating memory
space required for loading a code of a dynamic applica-
tion file, and calculating an initial address of each code
segment, reading section content of the relocatable file,
and writing the content into the allocated memory space
of the section correspondingly;
wherein recombining the relocatable file comprises: rank-
ing sections of three segments of TEXT, DATA and
Block Started by Symbol (BSS) to which the relocatable
file belongs in an ascending order based on section
names and the section serial numbers, and ranking in the
ascending order based on the section names is preferred.
3. The method according to claim 2, wherein obtaining the
relocation target address comprises:
analyzing the relocatable file to obtain a section header of
a symbol section, traversing a section header table of the
relocatable file according to ash_type field of the section
header, and searching for the symbol section of the relo-
catable file;
determining whether a symbol of the relocatable file is an
undefined symbol according to a st_shndx field of a
symbol item of the symbol section;
when the symbol of the relocatable file is an undefined
symbol, searching the system symbol table to obtain a
symbol address of the undefined symbol, and using the
symbol address of the undefined symbol as an external
symbol address referenced by the dynamic application
file; the external symbol address referenced by the
dynamic application file is the relocation target address.

5

20

25

30

35

40

45

50

55

65

14

4. The method according to claim 2, wherein calculating
the address to be relocated comprises:
obtaining an offset of a relocated position in an affiliated

section according to relocation information; and obtain-
ing the address to be relocated by adding an obtained
offset to an initial address of the affiliated section.

5. The method according to claim 2, further comprising:
after the relocation section is found,
determining whether relocation items have been traversed

completely, and if the relocation items have not been
traversed completely, then obtaining the relocation tar-
get address;

ifthe relocation items have been traversed completely, then

determining whether the section header table has been
traversed completely, and if the section header table has
not been traversed completely, keeping on searching to
determine whether there is relocation section; if the sec-
tion header table has been traversed completely, ending
the relocatable dynamic loading process.

6. The method according to claim 3, wherein calculating
the address to be relocated comprises:
obtaining an offset of a relocated position in an affiliated

section according to relocation information; and obtain-
ing the address to be relocated by adding an obtained
offset to an initial address of the affiliated section.

7. The method according to claim 3, further comprising:
after the relocation section is found,
determining whether relocation items have been traversed

completely, and if the relocation items have not been
traversed completely, then obtaining the relocation tar-
get address;

ifthe relocation items have been traversed completely, then

determining whether the section header table has been
traversed completely, and if the section header table has
not been traversed completely, keeping on searching to
determine whether there is relocation section; if the sec-
tion header table has been traversed completely, ending
the relocatable dynamic loading process.

8. The method according to claim 1, wherein calculating
the address to be relocated comprises:
obtaining an offset of a relocated position in an affiliated

section according to relocation information; and obtain-
ing the address to be relocated by adding an obtained
offset to an initial address of the affiliated section.

9. The method according to claim 1, further comprising:
after the relocation section is found,
determining whether relocation items have been traversed

completely, and if the relocation items have not been
traversed completely, then obtaining the relocation tar-
get address;

ifthe relocation items have been traversed completely, then

determining whether the section header table has been
traversed completely, and if the section header table has
not been traversed completely, keeping on searching to
determine whether there is relocation section; if the sec-
tion header table has been traversed completely, ending
the relocatable dynamic loading process.

10. The method according to claim 1, wherein calculating
the address to be relocated comprises:
obtaining an offset of a relocated position in an affiliated

section according to relocation information; and obtain-
ing the address to be relocated by adding an obtained
offset to an initial address of the affiliated section.

11. The method according to claim 1, further comprising:
after the relocation section is found,

US 8,566,372 B2

15

determining whether relocation items have been traversed
completely, and if the relocation items have not been
traversed completely, then obtaining the relocation tar-
get address;

ifthe relocation items have been traversed completely, then
determining whether the section header table has been
traversed completely, and if the section header table has
not been traversed completely, keeping on searching to
determine whether there is relocation section; if the sec-
tion header table has been traversed completely, ending
the relocatable dynamic loading process.

12. A mobile device for dynamically loading a relocatable

file, comprising:

an analyzing module configured to analyze the relocatable
file;

a searching module configured to search for a relocation
section according to information obtained by the ana-
lyzing module, and obtain a relocation target address;

a calculating module configured to calculate an address to
be relocated and a skipping distance;

a determining module configured to determine whether the
skipping distance exceeds a range of a short skipping,
and inform a result of determining to a relocation
dynamic loading module;

the relocation dynamic loading module configured to fill
the relocation target address into the address to be relo-
cated; and add a veneer code, transform the short skip-
ping exceeding the range of the short skipping into an
effective short skipping and a long skipping, skip to the
veneer code through the effective short skipping, and
then skip to the relocation target address to perform
relocation dynamic loading; and

wherein adding the veneer code comprises:

generating the veneer code, and filling a long skipping
instruction and the external symbol address which is
referenced by the dynamic application file into the
veneer code, respectively; filling an initial address of the
veneer code into the address to be relocated to form an
effective short skipping, an effective short skipping
instruction directs to the veneer code; and making the
skipping exceeding the range of the short skipping skip
indirectly to the relocation target address comprises:
skipping to the veneer code through the effective short
skipping, then skipping to the referenced external sym-
bol address through a long skipping of the veneer code.

13. The device according to claim 12, further comprising:

a recombining module configured to rank sections of three
segments of TEXT, DATA and BSS to which the relo-
catable file belongs in an ascending order based on sec-
tion names and section serial numbers, wherein ranking
in the ascending order based on the section names is
preferred;

5

25

30

35

40

50

16

a memory dividing module configured to calculate and
divide memory space required for loading a code of a
dynamic application file, and read section content of the
relocatable file, and write the content into the memory
space of the section correspondingly;

wherein the calculating module is further configured to
calculate initial addresses of each code segment and
each section.

14. The device according to claim 13, further comprising:

a first traversing module configured to traverse a section
header table, and inform the searching module when the
traversal is completed;

a second traversing module configured to traverse a relo-
cation item, and inform the calculating module when the
relocation item is started to be traversed, and inform the
first traversing module when the relocation item is not
traversed;

wherein the searching module is further configured to
inform the second traversing module when the reloca-
tion section is found.

15. The device according to claim 13, wherein the reloca-

tion dynamic loading module comprises:

an adding unit configured to add the veneer code;

a transforming unit configured to transform the short skip-
ping exceeding the range of the short skipping into an
effective short skipping and a long skipping, skip to the
veneer code through an effective short skipping skip,
and skip to a referenced external symbol address
through a long skipping instruction of the veneer code.

16. The device according to claim 12, further comprising:

a first traversing module configured to traverse a section
header table, and inform the searching module when the
traversal is completed;

a second traversing module configured to traverse a relo-
cation item, and inform the calculating module when the
relocation item is started to be traversed, and inform the
first traversing module when the relocation item is not
traversed;

wherein the searching module is further configured to
inform the second traversing module when the reloca-
tion section is found.

17. The device according to claim 12, wherein the reloca-

tion dynamic loading module comprises:

an adding unit configured to add the veneer code;

a transforming unit configured to transform the short skip-
ping exceeding the range of the short skipping into an
effective short skipping and a long skipping, skip to the
veneer code through an effective short skipping skip,
and skip to a referenced external symbol address
through a long skipping instruction of the veneer code.

#* #* #* #* #*

