The invention relates to a folding clasp having at least one folding arm (1, 2) articulated with respect to a base plate (3), with a locking means (4) located on the base plate (3), permitting a locking of said at least one folding arm (1, 2) by pressing said folding arm (1, 2) onto said locking means (4), said locking means (4) being compressible and/or deformable in a first plane (FF) parallel to a base surface of said locking means (4).
1

CLASP WITH UNFOLDING ARMS

The invention relates to a clasp, particularly a folding clasp in accordance with the claims. It more specifically relates to a folding clasp for a wrist-watch with at least one folding arm which can be locked on an elastic locking means located in a base plate.

EP-509,938 discloses a folding clasp comprising two folding arms articulated at the ends of a central cover or stretcher. Each arm has a concavity permitting locking by compressing said concavity on a rod or pin of the central cover. The arms are in one piece and have limited elasticity and the concavities lose their flexibility under the effect of a repeated compression. In order to correct this flexibility loss, the width of the concavity can be modified by forming a groove placed behind the concavity with the aid of a screwdriver or knife tip. This flexibility modification is not very reliable and there is a risk of the folding arm being destroyed.

EP-115,740 discloses another folding, snap-on clasp with a tuning fork system and having a more stable construction, with large friction surfaces for the notching of the folding arms. Mention is made of the significant amount of force necessary for closing or opening the strap. This constitutes another disadvantage, because the user may damage his nails on activating the nail-groove.

A third disadvantage relates to the reliability and security of the known folding, snap-on clasp fasteners. It is difficult to regulate the locking forces and there is a risk of an untimely opening of the folding clasp. In exemplified manner mention is made of the problem of the asymmetry of the snap-on force of a clasp having two folding arms closing on a common stud. During a first notching of one of the folding arms said stud is slightly deformed, resulting in a differentiated snap-on force of the notching of the other folding arm.

The significant costs of known folding clasps represent a fourth disadvantage, particularly due to the high precision required during the manufacture of elements requiring special tools and irreversible connections of the different elements of the clasp. The prevents any replacement of the elements and also frequently a subsequent dismantling of said clasp.

A fifth disadvantage is the lack of long-term stability of the known, snap-on, folding clasp fasteners. The fastening of the different elements are often subject to highly disadvantageous effects such as corrosion, so that there is a risk of the folding clasps breaking.

A sixth disadvantage results from the use of identical materials, such as stainless steel on stainless steel, so that there is a danger of jamming when specific pressures become high. From the mechanical standpoint it is not appropriate to effect a snap-on action using identical materials. The ideal situation would be to use a pair of materials differing by the molecular structure and a hardness difference.

Therefore, the object of the present invention is to provide a solution to these problems by creating a generally applicable, folding clasp, e.g. for a wrist-watch, which has a particularly compact construction compatible with known, proven manufacturing methods.

This object is achieved by the invention as defined in the claims.

The invention will be described relative to the attached drawings, wherein show:

FIGS. 1a and 1b A side and plan view of a detail of a first, preferred embodiment of a folding clasp according to the invention, showing the folding arms, a base plate and an elastic locking means incorporating a coil or spiral spring.

FIGS. 2a and 2b A side and plan view of a detail of a second, preferred embodiment of a folding clasp according to the invention, showing the folding arms, a base plate and an elastic locking means incorporating an elastic tube.

FIGS. 3a and 3b A plan view, partly in section, of a detail of the first, preferred embodiment of the locking means for a folding clasp according to FIGS. 1a and 1b, showing a compression of the elastic locking means in a first transverse plane.

FIG. 4 A plan view, partly in section of a detail of the second, preferred embodiment of the locking means of a folding clasp according to FIGS. 2a and 2b showing a deformation of the elastic locking means in a first transverse plane.

FIG. 5 An exploded view of a detail of a third, preferred embodiment of a folding clasp according to the invention showing the folding arms, a base plate and an elastic locking means incorporating a coil and/or an elastic tube.

FIG. 6 A side and plan view of a detail of a fourth, preferred embodiment of a folding clasp according to the invention showing the folding arms, a base plate and an elastic locking means incorporating a tube and a coil spring.

FIG. 7 A plan view, partly in section, of a detail of the fourth, preferred embodiment of the locking means of a folding clasp according to FIG. 6 showing a compression/deformation of the elastic locking means in a first transverse plane and in a second longitudinal plane.

FIG. 8 A side view, partly in section, of a detail of a fifth, preferred embodiment of the locking means of a folding clasp according to FIG. 6, showing the locking means in a first transverse plane and a second longitudinal plane.

FIG. 9a and 9b A plan view, partly in section, of a detail of a fifth, preferred embodiment of the locking means of a folding clasp according to FIG. 8, showing a compression of the elastic locking means in a first transverse plane and a second longitudinal plane.

FIG. 10 A plan view, partly in section, of a detail of a sixth, preferred embodiment of the locking means of a folding clasp according to the invention showing the folding arms, a base plate, an elastic locking means incorporating a tube and a coil spring and a security locking device of the security means, the elastic locking means being compressed/deformed in a first transverse plane and a second longitudinal plane.

FIG. 11 A side view, partly in section, of a detail of a fifth, preferred embodiment of the locking means of the folding clasp according to FIG. 10.

The visible elements of the folding clasp according to the invention are preferably metallic and are e.g. made from stainless steel and/or gold. However, it is obviously possible to use other basic materials. The folding clasp comprises at least one fold arm 1, 2 articulated with respect to a base strip or plate 3 and a locking means 4. According to the preferred embodiments shown in FIGS. 1a to 11, the base plate 3 is formed by two edge plates linked by two base pins 30. According to said preferred embodiments, said base pins 30 also serve as a hinge for the two folding arms 1, 2. Preferably, fasteners 11, 21 positively engaging on the folding arms 1, 2 permits the fixing of a watch-strap to the folding clasp, said fasteners 11, 21 e.g. permitting the fixing of a link strap. It is e.g. possible to provide terminal links jointly forming part of a link strap and the folding clasp. Such terminal links extend beyond the scope of the present invention and are not shown in the drawings.
The said locking means 4 is firmly fixed in at least one opening 3.1, 3.1' of the base plate 3. Said locking means 4 permits a locking of at least one folding arm 1, 2 by pressing down the latter onto the locking means 4. Each folding arm 1, 2 comprises at least one contact surface 1.4, 2.4 which can bear in compression or reversible deformation on the locking means 4. Said locking means can be compressed or deformed in a first plane TT' parallel to its base surface and/or in a second plane LL' transversely to its base surface. Six preferred embodiments of a folding clasp according to the invention are shown:

FIGS. 1a, 1b, 3a and 3b show a first, preferred embodiment of a folding clasp with compression in a first plane TT' of a locking means 4 with a coil spring 4.1 and a core 4.2.

FIGS. 2a, 2b and 4 show a second, preferred embodiment of a folding clasp with deformation in a first plane TT' of a locking means 4 with an elastic tube 4.3 and a core 4.2.

FIG. 5 shows a third embodiment of a folding clasp with compression in a first plane TT' and a second plane LL' of a locking means 4 with a coil spring 4.1 and/or an elastic tube 4.3 and two cores 4.2.

FIGS. 6 and 7 show a fourth embodiment of a folding clasp with compression/deformation in a first plane TT' and a second plane LL' of a locking means 4 with a coil spring 4.1, two cores 4.2 and an elastic tube 4.3.

FIGS. 8, 9a and 9b show a fifth embodiment of a folding clasp with compression in a first plane TT' and a second plane LL' of a locking means 4 with a coil spring 4.1 and two cores 4.2.

FIGS. 10 and 11 show a sixth embodiment of a folding clasp with compression/deformation in a first plane TT' and a second plane LL' of a locking means 4 with a coil spring 4.1 and an elastic tube 4.3.

Said locking means 4 comprises several elastic elements and combinations of said elastic elements. In the preferred embodiments according to FIGS. 1a, 1b, 3a, 3b, 5 to 11, the locking means 4 comprises a coil spring 4.1 and at least one core 4.2 serving as a support and fixture in the base plate 3 to said coil spring 4.1. The coil spring 4.1 is arranged around said at least one core 4.2 permitting a compression of the coils 40 in a first plane TT' and approaching them to said at least one core 4.2 and a compression of the coils 40 in a second plane LL' by sliding on said at least one core 4.2. At least one contact surface 1.4, 2.4 of at least one folding arm 1, 2 bears on the locking means 4 compressing at least one portion of an end of said locking means 4 oriented in the first plane TT' of said locking means 4. The interaction surfaces of the folding arms 1.4, 2.4 with the coil spring 4.1 extend over the entire width of said coil spring 4.1. FIGS. 3a, 3b, 9a, 9b show the compression by a distance c in the plane TT' of the coils 40 of said locking means 4 under the effect of a closure force F. The coils 40 of the coil spring 4.1 and flexible, become oval and can be displaced, so as to permit a self-centering a compression of a possible asymmetry in the alignment of the folding arms, 1, 2 with respect to the locking means. This closure is accompanied by an expansion of the coils 40 of the coil spring 4.1 on the exterior of the core 4.2. FIGS. 3a and 3b show the expansion by a distance c in the plane LL' of the locking means 4 under the effect of the closure force F.

In other preferred embodiments according to FIGS. 2a, 2b, 4 to 11 the locking means 4 comprises an elastic tube 4.3 and at least one core 4.2. Said elastic tube 4.3 has a thin wall 400 serving as interaction portions and permitting a reversible deformation. Under the effect of a closure force F, the thin wall 400 can be deformed and the elastic tube 4.3 becomes oval. This deformation more particularly takes place in the central portion of the elastic tube 4.3, because the ends of said elastic tube 4.3 are fixed in the base plate 3. The contact surfaces 1.4, 2.4 of the folding arms 1, 2 can bear in reversible deformation on the elastic tube 4.3, being adapted as regards shape and width to said deformation of the central portion of such an elastic tube 4.3. As the width of the interaction surface with the folding arms 1, 2 is reduced by more or less than half compared with the interaction surface of the coil spring 4.3 with the folding arms 1, 2, there is a reduction of the prejudicial effects of a possible asymmetry in the alignment of the folding arms 1, 2 with respect to the locking means 4.

The elastic tube 4.3 is preferably metallic and its thin wall 400 preferably has a thickness of 0.15 mm. For a smaller thickness, the maximum bending stress would become excessive (the deformation force being too high and snapping on becoming difficult), whereas for a greater thickness the elastic constant of the elastic tube 4.3 becomes too high (the thin wall 400 deforming beyond the reversible yield strength and the snapping-on effect not being adequately pronounced). Thus, for an elastic tube 4.3 manufactured from a metallic material, e.g. a stainless steel tube 4.3, a thickness of 0.15 mm represents an upper limit, permitting both a clearly defined snapping on a closure force (which is adequately felt, without being either too great or too small), whilst guaranteeing an easy machining of the locking means 4.

Without passing beyond the scope of the present invention, it would consequently be possible to directly fix said elastic tube 4.3 in the base plate 3. In principle, such an elastic tube 4.3 has no need for a core. However, the use of at least one core 4.2 is preferred, because it leads to an increase in the stability and reliability of the fixing of said elastic tube 4.3 in the base plate 3. In order to permit a deformation of the elastic tube 4.3 in its central portion, the external diameter of said at least one core 4.2 must be smaller than the internal diameter of the elastic tube 4.3. In order to bring about a fixing of the ends of said elastic tube 4.3 to said at least one core 4.2, crosspieces 4.4 can be provided for connecting said elastic tube 4.3 to said at least one core 4.2.

With the knowledge of the present invention, the expert can vary said closure force F by numerous different means. It is e.g. possible to combine a coil spring 4.1 with an elastic tube 4.3, as is shown in other preferred embodiments according to FIGS. 5 to 7, 10 and 11. Preferably, said coil spring 4.1 is placed on or around one of two cores 4.2 and the said elastic tube 4.3 is placed around said coil spring 4.1. This leads to the advantages that the coil spring 4.1 is virtually completely hidden, thus complying with esthetic requirements, whilst still holding the folding clasp, because the coils 400 can be prejudicial to the appearance of the folding clasp (depending on the taste of customers and fashion) and the coils 400 and in particular the interstices cannot be dirty (although easy to clean).

The opening of the locked folding clasp takes place by pressing at least one portion of one end 4 of at least one core 4.2 in order to compress the coil 40 of a coil spring 4.1 and/or for deforming the thin wall 400 of an elastic tube 4.3 oriented in the second plane LL' of the locking means 4, so as to deactivate the locking of the contact surfaces 1.4, 2.4 of the folding arms 1, 2 with the locking means 4. The compressed coils 40 and deformed thin wall 400 through said at least one core 4.2 exert an opening force on the contact surfaces 1.4, 2.4 of the folding arms 1, 2 and make it possible to open the folding clasp. The user is able to unlock the folding clasp simply by pushing the ends 4.5 of
at least one core 42, passing beyond the side walls of the base plate 3, preferably with the flat ends of two fingers, so that the nails are not damaged on activating a nail-groove.

It is consequently possible to sue a folding clasp according to the invention having a locking means 4 with as its elastic elements either a coil spring 41, or an elastic tube 43 and/or a combination of a coil spring 41 with an elastic tube 43. On pivoting the two folding arms 1, 2 towards the base plate 3, it is necessary to compress the coils 40 of a coil spring 41 and/or the thin wall 400 of the elastic tube 43 in a transverse manner by the contact portions 1.4, 2.4 or concave ends of the folding ends 1, 2 in order to be able to close the folding arms 1, 2 by snapping on and expansion of the coils 40 of a coil spring 41 or by reversible deformation of the thin wall 400 of an elastic tube 43 in the ends in the form of concavities of the folding arms 1, 2. FIGS. 3a, 3b and 9a, 9b show the compression by a distance e of a locking means 4 in the form of a coil spring 41 under the effect of the closure force F. FIG. 4 shows the deformation of a locking means 4 in the form of an elastic tube 43 under the effect of the closure force F.

The main difference in the elastic means 41, 43 of the locking means 4 used according to the invention relates to the manner in which such an elastic element 41, 43 compensates such a closure force F.

The coils 40 of a coil spring 41 are flexible, become oval and can be displaced on one or two cores 42 serving for fixing purposes in the base plate 3. Thus, the coils 40 permit a self-centering and a compensation of a possible asymmetry in the alignment of the folding arms 1, 2 with respect to the locking means 4. The closure of the folding arms 1, 2 is accompanied by an expansion of the coils 40 on the outside of the core 42. The interaction between the folding arms 1, 2 and the coil spring 41 takes place over the entire width of said coil spring 41.

The thin wall 400 of an elastic tube 43 can be deformed and becomes oval. This deformation more particularly takes place in the central portion of the elastic tube 43, because its ends are fixed (directly or indirectly) in the base plate 3. The contact surfaces 1.4, 2.4 of the folding arms 1.2 can bear in reversible deformation on said elastic tube 43, being adapted as regards shape and width to the deformation of the central portion of such an elastic tube 43. In view of the reduced width of the interaction of the coil spring 41, the prejudicial effects of a possible asymmetry in the alignment of the folding arms 1, 2 with respect to the locking means 4 are of a minimum nature.

A combination of an elastic tube 43 with a coil spring 41 arranged on one or two cores 42 permits both a self-centering and a compensation of a possible asymmetry in the alignment of the folding arms 1, 2 with respect to the locking means 4 and a deformation limited to the central portion of the elastic tube 43. The coil spring 41 is almost completely hidden, thereby complying with esthetic requirements, whilst still permitting an easy holding action of the folding clasp.

Another advantage of the present invention results directly from the use of a single locking means 4, permitting regulation of the closure force F, whilst replacing one or more elements of said locking means 4. The male and female models differ only by the spring force or elasticity. The folding clasp permits a rapid change to the closure force F on replacing the locking means 4. For this purpose, it is obviously possible to use locking means 4 having different closure forces F. This can take place by choosing a slightly larger or smaller diameter for the locking means 4 or by using coils 40 of a coil spring 41 or a thin wall 400 of an elastic tube 43 having a more or less pronounced elasticity.

The folding clasp according to the invention can comprise a security means 5 being arranged in articulated manner with respect to a folding arm 1, 2 and permitting a security locking of said at least one folding arm 1, 2 by pressing down said security means 5 on said locking means 4. Said security means 5 comprises at least one contact surface 5.4 able to bear in compression in a second plane II' on the locking means 4. FIGS. 8 to 11 show that the security means 5 is preferably in the form of a cover. This cover is detachably fixed to a not shown, terminal link forming part of a watch-strap and the folding clasp. A pin 5.6 serves as a hinge for said fastening. With the knowledge of the present invention, the expert can obviously arrive at other arrangements for the security means with respect to the folding clasp.

According to the preferred embodiments shown in FIGS. 8 to 11, at least one contact surface 5.4 of at least one security means 5 bears on the locking means 4, whilst pressing at least one portion of an end 4.5 of at least one core 42 and compressing the coils 40 of a coil spring 41 oriented in the second plane II' of the locking means 4. FIGS. 8, 9a and 9b show an embodiment of a folding clasp with a locking means 4 having a coil spring 41 and two cores 42. FIGS. 10 and 11 showing an embodiment of a folding clasp with a locking means 4 having a coil spring 41, two cores 42 and an elastic tube 43.

Said security locking takes place by pivoting the security means 5 in the form of a cover towards the folding arms 1, 2. At least one portion of an end 4.5 of at least one core 42 is pressed and the coils 40 of a coil spring 41 are longitudinally compressed by the interior of the contact portions or notches 5.4 of the lateral security arms 5, so that it is possible to close the cover by snapping on and expansion of the coils 40 in the notches 5.4 within the lateral security arms 5. FIGS. 8, 9a and 9b show two stages of such a security fastener F. They show the compression by a distance d in plane II' of the locking means 4 under the effect of the security force F. When the coils 40 are pressed, they are compressed more, bringing about an additional security force F' over and beyond the closure force F. However, said security force F' remains smaller than the opening force of the folding clasp, thus permitting a security locking without undoing the locking of the folding arms 1, 2.

The folding clasp according to the invention permits the closure of the folding arms 1, 2 and a security locking of said fastener. The use of the security means 5 in the form of a cover according to FIGS. 8 to 11 remains optional. The folding clasp is constructed with a minimum number of elements, having a considerably symmetry and stability, guaranteeing reliable operation and easy holding. Said at least one folding arm 1, 2 and said security means 5 are preferably machined as one-piece metal item. In exemplified manner, FIG. 2b shows a preferred embodiment of a folding arm 1, 2 and a fastener 1.1, 2.1 connected by positive engagement with the aid of a pin 1.10, 2.10. This permits an easy machining and rapid variation of the appearance of the folding clasp. As the fastener 1.1, 2.1 is used for the fixing of a watch-strap, a shape change with respect to the strap and the links does not require a replacement of the complete folding arms 1, 2, but merely requires a replacement of the fasteners 1.1, 2.1.

An additional advantage is the avoidance of welding. In view of the high precision required for an easy, repeated actuation of the clasp in view of the technical difficulties encountered during the treatment of the chosen materials (reduction of hardness during welding, asymmetrical deformation during welding), it has been found to the advanta-
comprises an elastic tube (4.3) having a thin wall (400), permitting a deformation of the thin wall (400) in the first plate (TT').

6. The folding clasp according to claim 5, characterized in that the elastic tube (4.3) is fixed through at least one core (4.2) in the base plate (3).

7. The folding clasp according to claim 6, characterized in that the elastic tube (4.3) is fixed by its ends to said at least one core (4.2) and that crosspieces (4.4) can be provided for connecting said elastic tube (4.3) to said at least one core (4.2).

8. The folding clasp according to claim 6, characterized in that the external diameter of said at least one core (4.2) is smaller than the internal diameter of said elastic tube (4.3) and that the elastic tube (4.3) is deformed in its central portion.

9. A folding clasp according to claim 5, characterized in that the locking means (4) further comprises a coils spring (4.1) comprising coiled (40) and at least one core (4.2), that said coiled spring (4.1) is placed on or around said at least one core (4.2), that said elastic tube (4.3) is placed around said coil spring (4.1) so that the latter is almost completely hidden, whilst permitting a compression of the coils (40) and a deformation of the thin wall (400) in the first plate (TT').

10. The folding clasp according to claim 1, characterized in that the locking means (4) is firmly fixed in at least one opening (3.1, 3.1') of the base plate (3).

11. The folding clasp according to claim 1, characterized in that the locking means (4) is metallic.

12. The folding clasp according to claim 1, characterized in that each of said two folding arms (1, 2) comprises at least one contact surface (1.4, 2.4) able to bear in compression and/or deformation on the locking means (4).

13. The folding clasp according to claim 12, characterized in that said least one contact surface (1.4, 2.4) of each of said two folding arms (1, 2) bears on the locking means (4) compressing and/or deforming at least one portion of an end oriented in the first plane (TT') of the locking means (4).

14. The folding clasp according to claim 5, further comprising a coil spring (4.1) comprising coils (40), characterized in that said coil spring (4.1) is arranged around at least one core (4.2), permitting a compression of the coils (40) in a second plane (LL') transversely to the base surface of said locking means (4) by the sliding of the coils (40) on the core (4.2).

15. A folding clasp having at least one folding arm (1, 2) articulated with respect to a base plate (3), characterized in that a locking means (4) having a base surface is placed on the base plate (3), permitting a locking of said at least one folding arm (1, 2) by turning down said folding arm (1, 2) onto said locking means (4) and said locking means (4) can be compressed and/or deformed in reversible manner in a first plane (TT') parallel to the base surface of said locking means (4). Characterized in that the locking means (4) is fixed in the base plate through said at least one core (4.2).
means (5) on said locking means (4) and that the locking means (4) can be compressed in a second plane (LL') transversely to its base surface.

16. The folding clasp according to claim 15, characterized in that at least one contact surface (5,4,5') of at least one security means (5) bears on the locking means (4) compressing at least one portion of an end (4,5) of at least one core (4,2) oriented in the second plane (LL') of the locking means (4).

17. The folding clasp according to claim 15, characterized in that said security means (5) is a cover machined as a one-piece metal item.

18. The folding clasp according to claim 1, characterized in that said two folding arms (1,2) are machined as one-piece metal items and that a fastener (1,1,2,1) for fixing a watch-strap is connected to each folding arm (1,2) by positive engagement.

* * * * *