The disclosure discloses a method and device for detecting a state of an overcurrent protector for a battery, wherein a voltage U_{out} of a power supply and a voltage U_{bat} of a battery connected to the power supply via an overcurrent protector is acquired, and $U = U_{out} - U_{bat}$ is calculated; when $U < U_{fr}$ and $I_{bat} < I_{max}$, the voltage of the power supply is adjusted to be $U_{new}^{'}$, wherein U_{fr} and U_{bi} are the minimum value and maximum value of a difference between the voltage of the power supply and the voltage of the battery, respectively, I_{bat} is a current of the battery, and I_{new} is a current detecting precision for detecting a current equipment of the battery; the voltage of the battery $U_{new}^{'}$ after adjusting the voltage of the power supply is acquired, and $U = |U_{out} - U_{new}^{'}|$ is calculated; and a state of the overcurrent protector for the battery is determined. With the disclosure, in the case that the difference between the voltage of the battery and the supply voltage is small, by regulating the supply voltage and comparing the voltage difference across the overcurrent protector again, accurate detection of the state of the overcurrent protector for the battery as well as reduction of detecting cost is enabled.
Fig. 4

S101 acquire a voltage \((U_{out})\) of a power supply and a voltage of a battery connected to the power supply via an overcurrent protector \((U_{bat})\), and calculate \(U, U = |U_{out} - U_{bat}|\)

S102 When \(U \leq U \leq U_{ll}\), and \(|\text{battery current}| \leq \text{current detecting precision of battery current detecting equipment}\) \(|I_{bat}| \leq I_{\text{min}}\), adjust the voltage of the power supply

S103 acquire the voltage of the battery after adjusting the voltage of the power supply \((U'_{bat})\), and calculate \(U'\), wherein \(U' = \text{the adjusted voltage of the power supply} - \text{the voltage of the battery after adjusting the voltage of the power supply}\) \((U' = U_{out} - U'_{bat})\)

S104 determine a state of the overcurrent protector for the battery according to the relation between \(U'\) and \(U_{ll}\)
Fig. 8

begin

is battery current greater than current detecting precision of battery current detecting equipment?

yes

Calculate U, $U = |a$ voltage of a power supply – a voltage of a battery connected to the power supply via an overcurrent protector $|$.

no

decide whether U is greater than U'.

yes

decide whether U is smaller than U'.

no

adjust the voltage of the power supply and calculate a post-adjustment voltage difference U'.

no

is post-adjustment battery current $>$ greater than I_{ref}?

yes

decide whether U' is greater than U'_{ref}.

no

overcurrent protector is OFF

overcurrent protector is ON

regulate to recover system voltage

end
METHOD AND DEVICE FOR DETECTING STATE OF OVERCURRENT PROTECTOR FOR BATTERY

TECHNICAL FIELD

[0001] The disclosure relates to the technical field of electronics, in particular to a method and device for detecting a state of an overcurrent protector for a battery.

BACKGROUND

[0002] In a common load supply system, as backup power of the system, a battery realizes that a load continues to function properly in the case of a main power supply source failure, which ensures the stable and reliable operation of the system. Overcurrent protection for a battery is implemented by cascading an overcurrent protector at a battery input port. When the battery is overly charged/discharged, or the temperature thereof is too high, the overcurrent protector can disconnect automatically so as to protect a load equipment and the battery. The state of the overcurrent protector for the battery is of vital importance, which describes the charging/discharging state of the battery and reflects whether the overcurrent protector is damaged and connected. In the load supply system, the location of the overcurrent protector for battery protection in the whole system is shown in FIG. 1, wherein the system includes a main power supply, the overcurrent protector, the battery, the load and the like.

[0003] In general, there are two methods for deciding a state of an overcurrent protector. One is to decide the state of the overcurrent protector according to a state of an auxiliary contact of the overcurrent protector. As shown in FIG. 2, disconnection of the overcurrent protector will lead to jump of the auxiliary contact of the overcurrent protector, the jump of the auxiliary contact is detected via a hardware circuit, thus deciding the state of the overcurrent protector; the other is to decide the state of the overcurrent protector for the battery according to a voltage difference between a battery voltage and a system voltage, namely, voltage difference across the overcurrent protector for the battery. As shown in FIG. 3, when the overcurrent protector is disconnected (OFF), the battery voltage and the system voltage are not the same, the voltage difference across the overcurrent protector is compared, and then the voltage difference is converted to a numerical quantity, via which the state of the overcurrent protector is decided.

[0004] The detecting method to decide the state of the overcurrent protector according to the state of the auxiliary contact of the overcurrent protector has the following disadvantages: in general, the auxiliary contact adopts a mechanical transmission, which will often lead to the ineffectiveness of the auxiliary contact, thereby making the detection unreliable; compared with the overcurrent protector without the auxiliary contact, the overcurrent protector with the auxiliary contact is higher in price, and has no advantage in terms of costs; and the method requires that a system monitoring equipment must have a hardware detecting circuit for the auxiliary contact, which increases monitoring hardware costs.

[0005] The method for deciding the state of the overcurrent protector for the battery according to the voltage difference between the battery voltage and the system voltage has the following disadvantages: the voltage difference between the battery voltage and the system voltage is associated with the quality and extent of charging/discharging of the battery, when the quality of the battery is good and the extent of charging/discharging is low, this voltage difference will be very small. And the voltage difference decision will usually be based on one fixed criterion, in the case of a low voltage difference across the overcurrent protector, this will thus inevitably lead to the misjudgement of the state of the overcurrent protector. In addition, the method requires that a DC power monitoring equipment must have a voltage interface circuit and a voltage comparing and distinguishing circuit, which increases monitoring hardware costs.

SUMMARY

[0006] The technical problem to be solved by the disclosure is to provide a method and device for detecting a state of an overcurrent protector for a battery, so as to solve the problem of low reliability or misjudgement when deciding the state of the overcurrent protector in the prior art.

[0007] To solve the aforementioned technical problem, on one hand, the disclosure provides a method for detecting a state of an overcurrent protector for a battery, which includes:

[0008] acquiring a voltage \(U_{out} \) of a power supply and a voltage \(U_{bat} \) of a battery connected to the power supply via an overcurrent protector, and calculating \(U \), wherein \(U = |U_{out} - U_{bat}| \);

[0009] when \(U \leq U_{j} \leq U_{j} + U_{\Delta u}, \) adjusting the voltage of the power supply to be \(U'_{out} \), wherein \(U_{j} \) is a minimum value of a difference between the voltage of the power supply and the voltage of the battery, \(U_{j} \) is a maximum value of the difference between the voltage of the power supply and the voltage of the battery, \(U_{\Delta u} \) is a current of the battery, and \(U'_{out} \) is a current detecting precision of an equipment for detecting the current of the battery;

[0010] acquiring the voltage of the battery \(U'_{bat} \) after adjusting the voltage of the power supply, and calculating \(U' \), wherein \(U' = |U'_{out} - U'_{bat}| \);

[0011] determining a state of the overcurrent protector for the battery.

[0012] Furthermore, when \(U_{out} > U_{bat} \), \(U_{out} = U_{out} + \Delta u \); when \(U_{out} < U_{bat} \), \(U_{out} = U_{out} - \Delta u \), wherein \(\Delta u \) is an adjustment value of the voltage of the power supply.

[0013] Furthermore, the determining a state of the overcurrent protector for the battery may include: when \(U \leq U_{j} \), the state of the overcurrent protector for the battery is ON; when \(U > U_{j} \), the state of the overcurrent protector for the battery is OFF.

[0014] Furthermore, the determining a state of the overcurrent protector for the battery may include: when \(U > U_{j} \) or \(U_{bat} > U_{\Delta u} \), the state of the overcurrent protector for the battery is ON.

[0015] Furthermore, the determining a state of the overcurrent protector for the battery may include: when \(U > U_{j} \) and \(U_{bat} > U_{\Delta u} \), the state of the overcurrent protector for the battery is OFF.

[0016] On the other hand, the disclosure further provides a device for detecting a state of an overcurrent protector for a battery, which includes:

[0017] an initial voltage difference acquiring unit, which is configured to acquire a voltage \(U_{out} \) of a power supply and a voltage \(U_{bat} \) of a battery connected to the power supply via an overcurrent protector, and to calculate \(U \), wherein \(U = |U_{out} - U_{bat}| \);

[0018] a supply power voltage adjusting unit, which is configured to adjust, when \(U \leq U_{j} \) and \(U_{bat} \leq U_{\Delta u} \), the voltage
of the power supply to be U_{mca}, wherein U_{m} is a minimum value of a difference between the voltage of the power supply and the voltage of the battery, U_{m} is a maximum value of the difference between the voltage of the power supply and the voltage of the battery, I_{mca} is a current of the battery, and I_{min} is a current detecting precision of an equipment for detecting the current of the battery;

[0019] a post-adjustment voltage difference acquiring unit, which is configured to acquire the voltage of the battery U_{m} after adjusting the voltage of the power supply, and to calculate U_{m} within $U_{p}=U_{mca} \pm U_{m}$;

[0020] a state determining unit, which is configured to determine a state of the overcurrent protector for the battery.

[0021] Furthermore, when $U_{mca} \geq U_{m}$, $U_{m}=U_{mca}+\Delta U$; when $U_{mca} \leq U_{m}$, $U_{m}=U_{mca}-\Delta U$, wherein ΔU is an adjustment value of the voltage of the power supply.

[0022] Furthermore, when $U_{m} \leq U_{mca}$, the state determining unit may determine that the state of the overcurrent protector for the battery is ON; when $U_{m} \geq U_{mca}$, the state determining unit may determine that the state of the overcurrent protector for the battery is OFF.

[0023] Furthermore, when $U_{m}<U_{mca}$ or $I_{mca}=I_{max}$, the state determining unit may determine that the state of the overcurrent protector for the battery is ON.

[0024] Furthermore, when $U_{m}>U_{mca}$ and $|I_{mca}|>|I_{max}|$, the state determining unit may determine that the state of the overcurrent protector for the battery is OFF.

[0025] The beneficial effect of the disclosure is as follows.

With the disclosure, in the case that the difference between the battery voltage and the supply voltage is small, by regulating the supply voltage and comparing the voltage difference across the overcurrent protector again, accurate detection of the state of the overcurrent protector for the battery is enabled, with a high reliability and a low possibility of misjudgment. In addition, the state of the overcurrent protector for the battery is decided just by using existing detect data, without the need for additional expansion of a circuit for detecting the state of the overcurrent protector, thereby reducing detecting costs.

BRIEF DESCRIPTION OF THE DRAWINGS

[0027] FIG. 1 is a schematic diagram of the structure of a load supply system containing an overcurrent protector for a battery in the prior art;

[0028] FIG. 2 is a schematic diagram of a circuit for deciding a state of an overcurrent protector according to a state of an auxiliary contact of an overcurrent protector in the prior art;

[0029] FIG. 3 is a schematic diagram of a circuit for deciding a state of an overcurrent protector according to a voltage difference between a battery voltage and a supply voltage in the prior art;

[0030] FIG. 4 is a flowchart of a method for detecting a state of an overcurrent protector for a battery in an embodiment of the disclosure;

[0031] FIG. 5 is a schematic diagram of a circuit for detecting a state of an overcurrent protector for a battery in an embodiment of the disclosure;

[0032] FIG. 6 is a diagram of zones for deciding a state of an overcurrent protector for a battery in an embodiment of the disclosure;

[0033] FIG. 7 is a schematic diagram of the variation of a power supply voltage with time during voltage adjustment of the power supply in an embodiment of the disclosure;

[0034] FIG. 8 is a flowchart of another method for detecting a state of an overcurrent protector for a battery in an embodiment of the disclosure; and

[0035] FIG. 9 is a schematic diagram of the structure of a device for detecting a state of an overcurrent protector for a battery in an embodiment of the disclosure.

DETAILED DESCRIPTION

[0036] To solve the problem of low reliability or misjudgment when deciding a state of an overcurrent protector in the prior art, the disclosure provides a method and device for detecting a state of an overcurrent protector for a battery, and is further elaborated below with reference to the drawings and embodiments. It should be understood that, a specific embodiment described herein is merely intended to explain the disclosure, and is not intended to limit the disclosure.

[0037] FIG. 4 is a flowchart of a method for detecting a state of an overcurrent protector for a battery in an embodiment of the disclosure; FIG. 5 is a schematic diagram of a circuit for detecting a state of an overcurrent protector for a battery in an embodiment of the disclosure; as shown in FIG. 4 and FIG. 5, an embodiment of the disclosure relates to a method for detecting a state of an overcurrent protector for a battery, which includes the following steps:

[0038] Step S101: a voltage U_{mca} out of a power supply and a voltage U_{mca} of a battery connected to the power supply via an overcurrent protector are acquired, and a difference between the voltage of the power supply and the voltage of the battery $U=|U_{mca}-U_{mca}|$ is calculated;

[0039] Step S102: first, the minimum value U_{m} of and the maximum value U_{m} of the difference between the voltage of the power supply and the voltage of the battery, a current I_{mca} of an equipment for detecting the current of the battery are to be set up beforehand; U_{m} and U_{m} are associated with the hardware detecting circuit and a detecting precision. A user may sets up U_{m} and U_{m} according to an empirical value, or may eventually obtain a proper value through multiple tests and adjustments after the setup. I_{mca} is associated with factors such as the precision of a battery current detecting circuit, a battery capacity and the like, and may be measured by a detecting instrument.

[0040] When $|I_{mca}|=I_{max}$, namely, when an absolute value of a battery current exceeds I_{max}, a charging or discharging current of the battery shows that the battery is still coupled to a system output, it thus may be decided that the overcurrent protector for the battery is normal, namely, the state of the overcurrent protector is ON, in which case a deciding area is an ON2 area of the overcurrent protector in FIG. 6.

[0041] When $|I_{mca}|=I_{max}$ and $U=U_{m}$, namely, when an absolute value of a voltage difference across the overcurrent protector for the battery is smaller than U_{m}, the battery should be connected to a system output end via the overcurrent protector for the battery, so there is substantially no voltage difference between the two, thus the state of the overcurrent protector for the battery is normal, namely, the state of the overcurrent protector is ON, in which case a deciding area is an ON1 area of the overcurrent protector for the battery in FIG. 6.

[0042] when $|I_{mca}|=I_{max}$ and $U=U_{m}$, namely, when the absolute value of the voltage difference across the overcurrent protector for the battery is greater than U_{m}, the battery should be disconnected from the system output end, thus the state of
the overcurrent protector for the battery is OFF. In this case, the
deciding area is an OFF area of the overcurrent protector for
the battery in FIG. 6.
[0043] When \(I_{\text{out}} \neq I_{\text{in}} \) and \(U_{\text{out}} \neq U_{\text{in}} \), namely, the voltage
difference across the overcurrent protector for the battery
exists between \(U_{b} \) and \(U_{p} \), and the absolute value of the
battery current is smaller than \(I_{\text{max}} \), in which case the deciding
of the state of the overcurrent protector for the battery decide
a detection dead zone shown in FIG. 6, in which case, due
to the constraint of the detecting precision of the hard-
ware circuit and the extent of battery charging/discharging, it
is impossible to decide distinctly the state of the overcurrent
protector for the battery, thereby easily leading to a misap-
propriation. In this case, it is possible to decide whether there is
a following relation between the battery voltage and the voltage
of the power supply, and to decide the state of the overcurrent
protector, by deciding whether the battery voltage changes
after a system voltage adjustment. Thus, when \(U_{b} \neq U_{p} \) and
\(I_{\text{out}} \neq I_{\text{in}} \), regulation of the system system (the voltage of the
main power supply) \(U_{\text{out}} \) is implemented by regulating the
voltage of the main power supply, the voltage of the power
supply is adjusted to be \(U_{\text{out}} \); the adjustment value of the
voltage of the power supply is \(\Delta U \), wherein \(\Delta U \) is associated
with \(I_{\text{out}} \), \(U_{\text{out}} \), \(U_{p} \) and voltage stability, the range for
selecting \(\Delta U \) is \([U_{\text{out}}-\Delta U, U_{\text{out}}+\Delta U]\); when \(U_{\text{out}} > U_{\text{out}} \), \(U_{\text{out}} > U_{\text{out}} \), \(U_{\text{out}} < U_{\text{out}} \), \(U_{\text{out}} < U_{\text{out}} \), such an adjusting range
both satisfies a stability requirement of the system output
voltage, and can promptly push the deciding area from the
dead zone to a distinct area.
[0044] A process for regulating the system voltage (the
voltage of the power supply) is as shown in FIG. 7; a stable-
voltag period \(T_{1} \) and a voltage adjusting period \(T_{2} \) for the
system are associated with a voltage adjusting mode of the
voltage of the system and the stability requirement of the system.
After a voltage recovering period \(T_{3} \), for the system to
recovers to the normal state, the state of the overcurrent
protector for the battery at this moment is the state determined
in the end.
[0045] Step S103: the voltage of the battery \(U_{\text{out}} \) after
adjustment of the voltage of the power supply is acquired, that
is, the voltage of the battery is detected after a main power
supply system voltage is adjusted, then the difference
between the voltage of the power supply and the voltage of the
battery \(U_{\text{out}} = U_{\text{out}} U_{\text{out}} U_{\text{out}} \) is calculated after the main power
supply system voltage is adjusted; and
[0046] Step S104: the state of the overcurrent protector
for the battery is determined according to the relation between \(U_{p} \)
and \(U_{p} \). If the voltage difference \(U_{p} \) is greater than \(U_{p} \), it
shows that the overcurrent protector for the battery is
connected; if the voltage difference \(U_{p} \) is smaller than or equal
to \(U_{p} \), it means that the overcurrent protector is normal,
namely, in the ON state.
[0047] Taking a certain communication base station as an
example, the AC input of the DC power for communication of
the base station is 220V, and a single phase 220V rectifying
module is adopted, with a DC output of -48V; the battery
capacity is 500 Ah, and the overcurrent protector for the
battery adopts a fuse. \(I_{\text{in}} \) is set to be 0.6 A, \(U_{p} \) is set to be
0.6 V, and \(U_{b} \) is set to be 0.3 V, the flowchart of a method for
deciding the state of the overcurrent protector for the battery
is as shown in FIG. 8, and includes the following steps:
[0048] Step S201: begin;
[0049] Step S202: first, decide whether \(I_{\text{out}} \) is greater than
\(I_{\text{max}} \); if yes, go to step S210; otherwise, go to step S203. The
reason the step is carried out first is because, as shown
in FIG. 6, when \(I_{\text{out}} \) is greater than \(I_{\text{max}} \), the overcurrent
protector for the battery is in the ON state, the state of the
overcurrent protector for the battery may be obtained straight-
forwardly.
[0050] Step S203: acquire a battery voltage \(U_{b} \) and a sys-
tem voltage \(U_{\text{out}} \), then get an absolute value of a voltage
difference \(U \) between the two, namely, the absolute value of
the voltage difference across the overcurrent protector for the
battery \(U_{\text{out}} = U_{\text{out}} - U_{\text{out}} \); and
[0051] Step S204: decide whether \(U \) is greater than \(U_{p} \),
namely, decide whether \(U \) is greater than 0.6 V; if yes, go to
step S209; otherwise, go to step S205;
[0052] Step S205: decide whether \(U \) is smaller than \(U_{p} \),
namely, decide whether \(U \) is smaller than 0.3 V; if yes, go to
step S210; otherwise, go to step S206;
[0053] Step S206: when \(U_{p} \) is 0.6 V, and \(I_{\text{out}} \leq 0.6 A \); it is
impossible to decide the ON/OFF state of the overcurrent
protector, in which case a deciding by voltage adjustment is
required. If \(U_{\text{out}} > U_{\text{max}} \), a system voltage after regulation
\(U_{\text{out}} = U_{\text{out}} + 0.6 \); if \(U_{\text{out}} < U_{\text{min}} \), the system voltage after
regulation \(U_{\text{out}} = U_{\text{out}} - 0.6 \); the voltage difference across the
overcurrent protector for the battery is acquired again, wherein
the voltage of the battery is \(U_{\text{out}} \), the voltage of the power
supply is adjusted; \(U_{\text{out}} = U_{\text{out}} U_{\text{out}} U_{\text{out}} \) is calculated;
[0054] Step S207: decide whether \(I_{\text{out}} \) is greater than \(I_{\text{max}} \);
if yes, go to step S210; otherwise, go to step S208; wherein
\(I_{\text{out}} \) is the current of the battery after the voltage of the power
supply is adjusted;
[0055] Step S208: decide whether \(U_{p} \) is greater than \(U_{p} \),
namely, decide whether \(U_{p} \) is greater than 0.6 V; if yes, go to
step S209; otherwise, go to step S210;
[0056] Step S209: decide that the state of the overcurrent
protector for the battery is OFF;
[0057] Step S210: decide that the state of the overcurrent
protector for the battery is normal, namely, the state of the
overcurrent protector for the battery is ON;
[0058] Step S211: recover the power supply DC output
voltage to \(U_{\text{out}} \) display the state of the overcurrent protector,
and complete the detection; and
[0059] Step S212: end.
[0060] As shown in FIG. 9, the disclosure further relates to a
device for implementing the aforementioned method,
namely, a device for detecting a state of an overcurrent
protector for a battery, which includes:
[0061] an initial voltage difference acquiring unit 301 con-
figured to acquire a voltage \(U_{\text{out}} \) of a power supply and a
voltage \(U_{\text{out}} \) of a battery connected to the power supply via an
overcurrent protector, and to calculate \(U_{\text{out}} \), wherein \(U_{\text{out}} = U_{\text{out}} - U_{\text{out}} \);
[0062] a power supply voltage adjusting unit 302 con-
figured to adjust, when \(U_{\text{out}} - U_{\text{out}} \neq U_{\text{out}} \), the voltage of the
power supply to be \(U_{\text{out}} \), wherein \(U_{\text{out}} \) is the minimum value
of the difference between the voltage of the power supply and
the voltage of the battery, \(U_{\text{max}} \) is the maximum value of the
difference between the voltage of the power supply and the
voltage of the battery, \(I_{\text{out}} \) is a current of the battery, and \(I_{\text{max}} \)
is a current detecting precision of an equipment for detecting
the current of the battery;
[0063] a post-adjustment voltage difference acquiring unit
303 configured to acquire the voltage of the battery \(U_{\text{out}} \) after
adjusting the voltage of the power supply, and to calculate \(U_{\text{out}} \),
wherein \(U_{\text{out}} - U_{\text{out}} U_{\text{out}} \) and
a state determining unit 304 configured to determine a state of the overcurrent protector for the battery according to the relation of U_1 and U_{I1}.

Wherein, when $U_{OUT} > U_{BAR}$, $U_{OUT} - U_{OUT} = U_{BAR}$; when $U_{OUT} < U_{BAR}$, $U_{OUT} - U_{OUT} = U_{BAR}$, wherein U_{BAR} is the adjustment value of the voltage of the power supply.

Wherein, when $U < U_{I1}$ or $I_{BAR} < I_{MIN}$, the state of the overcurrent protector for the battery is ON.

Wherein, when $U < U_{I1}$, the state of the overcurrent protector for the battery is OFF; when $U > U_{I1}$, the state of the overcurrent protector for the battery is OFF.

Wherein, when $U > U_{I2}$ and $I_{BAR} > I_{MIN}$, the state of the overcurrent protector for the battery is OFF.

It can be seen from the aforementioned embodiments that the disclosure may decide the state of the overcurrent protector for the battery just by using existing detect data, without the need for increasing or expanding a circuit for detecting the state of the overcurrent protector, thereby reducing monitoring hardware costs. Moreover, in the case of a small voltage difference between the battery voltage and the system voltage, by regulating the system voltage and comparing the voltage difference across the overcurrent protector again, accurate detection of the state of the overcurrent protector for the battery is enabled, enhancing the sensitivity in detecting the state of the overcurrent protector. In addition, the battery current is introduced as an additional basis for deciding, accelerating the speed in deciding the state of the overcurrent protector for the battery, which is in better accordance with a real-time requirement.

Although a preferred embodiment of the disclosure is disclosed for purpose of illustration, a skilled person in the art will be aware of various improvements as well as possible additions and replacements; thus, the scope of the disclosure should not be limited to the aforementioned embodiments.

INDUSTRIAL APPLICABILITY

With the disclosure, in the case that the difference between the voltage of the battery and the supply voltage is small, by regulating the supply voltage and comparing the voltage difference across the overcurrent protector again, accurate detection of the state of the overcurrent protector for the battery is enabled, with a high reliability and a low possibility of misjudgement. In addition, the state of the overcurrent protector for the battery is decided just by using existing detect data, without the need for additional expansion of a circuit for detecting the state of the overcurrent protector, thereby reducing detecting costs.

What is claimed is:

1. A method for detecting a state of an overcurrent protector for a battery, comprising:
 - acquiring a voltage U_{OUT} of a battery connected to the power supply via an overcurrent protector, and calculating U_1 wherein $U = U_{OUT} - U_{BAR}$;
 - when $U < U_{I1}$ and $I_{BAR} < I_{MIN}$, acquiring the voltage of the battery U_{OUT} after adjusting the voltage of the power supply, and calculating U_1 wherein $U = U_{OUT} - U_{BAR}$; and determining a state of the overcurrent protector for the battery.
 - When $U > U_{I1}$, the state of the overcurrent protector for the battery is OFF.

2. The method for detecting a state of an overcurrent protector for a battery according to claim 1, wherein when $U_{OUT} < U_{BAR}$, $U_{OUT} - U_{OUT} = U_{BAR}$; when $U_{OUT} < U_{BAR}$, $U_{OUT} - U_{OUT} = U_{BAR}$, wherein U_{BAR} is an adjustment value of the voltage of the power supply.

3. The method for detecting a state of an overcurrent protector for a battery according to claim 1, wherein the determining a state of the overcurrent protector for the battery comprises when $U < U_{I1}$ and $I_{BAR} < I_{MIN}$, the state of the overcurrent protector for the battery is ON; when $U > U_{I1}$, the state of the overcurrent protector for the battery is OFF.

4. The method for detecting a state of an overcurrent protector for a battery according to claim 1, wherein the determining a state of the overcurrent protector for the battery comprises when $U < U_{I1}$, the state of the overcurrent protector for the battery is ON; when $U > U_{I1}$, the state of the overcurrent protector for the battery is OFF.

5. A device for detecting a state of an overcurrent protector for a battery, comprising:
 - an initial voltage difference acquiring unit, which is configured to acquire a voltage U_{BAR} of a power supply and a voltage U_{BAR} of a battery connected to the power supply via an overcurrent protector, and to calculate U_1 wherein $U = U_{OUT} - U_{BAR}$;
 - a power supply voltage adjusting unit, which is configured to adjust, when $U < U_{I1}$ and $I_{BAR} < I_{MIN}$, the voltage of the power supply to be U_{OUT} wherein U_1 is a minimum value of a difference between the voltage of the power supply and the voltage of the battery, U_{OUT} is a maximum value of the difference between the voltage of the power supply and the battery, I_{OUT} is a current of the battery, and I_{MIN} is a current detecting precision of an equipment for detecting the current of the battery;
 - a post-adjustment voltage difference acquiring unit, which is configured to acquire the voltage of the battery U_{BAR} after adjusting the voltage of the power supply, and to calculate U_1 wherein $U = U_{OUT} - U_{BAR}$; and
 - a state determining unit, which is configured to determine a state of the overcurrent protector for the battery.

6. The device for detecting a state of an overcurrent protector for a battery according to claim 6, wherein when $U_{OUT} > U_{BAR}$, $U_{OUT} - U_{OUT} = U_{BAR}$; when $U_{OUT} > U_{BAR}$, $U_{OUT} - U_{OUT} = U_{BAR}$, wherein U_{BAR} is an adjustment value of the voltage of the power supply.
10. The device for detecting a state of an overcurrent protector for a battery according to claim 6, wherein when $U > U_{TH}$ and $|I_{peak} > I_{min}$, the state determining unit determines that the state of the overcurrent protector for the battery is OFF.

* * * * *