Several, preferably three, deflection elements are placed and fixed around the wellhead, preferably in equal circumferential distances around the wellhead. For each deflection element a guiding cable is lowered with its head end from one or several, preferably three workspaces in the direction of the wellhead. Each guiding cable is looped with its head end through the corresponding deflection element, wherein each deflection element forms a point of reversal. Each guiding cable is pulled back with its head end side to the corresponding workspace while in return additional guiding cable is supplied and passed through the corresponding deflection element. A sealing element which is fastened to each guiding cable is lowered in the direction of the wellhead by pulling the guiding cables at their head end sides upwards and, in return, supplying the guiding cables in the direction of the wellhead on the lowering side. Later, the guiding cables are attached at a distance from each other around the sealing element, preferably attached at equal circumferential distances around the sealing element.
METHOD AND ARRANGEMENT FOR SEALING A SUBSEA OIL WELLHEAD

FIELD OF THE INVENTION

[0001] The invention relates to a method and a wellhead sealing arrangement for sealing a sub-sea oil well or gas well at the wellhead. Offshore oil and gas recovery is a business with increasing importance as enormous oil resources are located offshore in the sea sediments of coastal regions. To make offshore oil fields accessible for explorations oil rigs have to be built and anchored offshore. From this oil rigs well drilling is carried out in the seabed. The seabed, however, often lies several hundred meters below the sea level so that sophisticated drilling technologies have to be applied to make the oil fields accessible.

[0002] However, activities as offshore drilling and offshore oil production face high risks. In case of an accident close to the wellhead it is difficult to get access to the borehole for repair work in order to avoid an uncontrolled spill of oil and gas into the sea. Such an accident can e.g. be caused by a blowout, where gas escapes from the borehole under high pressure and damages the oil rig installation or even the device on the wellhead itself.

[0003] To prevent such a blowout, so-called blowout preventers are normally installed at the wellhead. This blowout preventers shall seal the wellhead in case of a blowout to avoid uncontrolled spill out of oil and gas. However, it still can happen that in case of a fierce blowout or an other damaging event the blowout preventer does not work or is destroyed. In such a case oil and gas spills out of the damaged bore hole in an uncontrolled manner.

[0004] There is very little experience about how to seal such a sub-sea borehole once all safety installation have failed. One problem is the position of the wellhead deep below the sea level on the seabed, which makes it difficult to access the wellhead for repair work. A second problem is the high pressure at which the oil or gas or a mixture of oil and gas escapes the bore hole. Because of this high pressure, the wellhead can not that easily capped by appropriate means.

DESCRIPTION OF THE INVENTION

[0005] It is therefore the object of the present invention to propose a method for sealing an opening of a sub-sea wellhead to stop the uncontrolled spill out of oil and gas through the opening, and a wellhead sealing arrangement to carry out this method.

[0006] The method according to the invention comprises the steps of:

[0007] locating, i.e. placing and fixing, a loop-like deflection element close to the wellhead;

[0008] lowering a guiding cable with its head end from a workspace above the wellhead, particularly above the sea level, in the direction of the wellhead;

[0009] looping the guiding cable with its head end through the deflection element, wherein the deflection element forms a point of reversal; and

[0010] pulling back the guiding cable with its head end to the workspace while in return additional guiding cable is supplied and passed through the deflection element;

[0011] lowering a sealing element which is fastened on the guiding cable in direction of the wellhead by pulling the guiding cable at its head end side upwards and supplying guiding cable in the direction of the wellhead on the lowering side;

[0012] placing the sealing element on the opening of the wellhead by further pulling the guiding cable at its head end side and thereby sealing the borehole with the sealing element.

[0013] The guiding cable is slidably passed through the deflection element. In a preferred embodiment of the invention the point of reversal on the deflection element lies, when the sealing element is placed in its sealing position, lower or at the same height than the lowest fixing point of the guiding cable on the sealing element. In this way the sealing element can safely be placed on the wellhead as a vertical force can be exerted on the sealing element by means of the guiding cable attached on the sealing element till the sealing element is firmly positioned on, respectively in the wellhead.

[0014] The workspace can be a boat which is positioned directly or laterally displaced above the wellhead. The boat is preferably anchored once it has reached its operation position. However, the workspace can also be a working platform, as e.g. an offshore oil rig.

[0015] In order to place and fix the at least one deflection element close to the wellhead an anchoring cable, on which the loop-like deflection element is fastened, is lowered from a workspace above the wellhead, particularly above the sea level, in direction of the wellhead. Subsequent, the anchoring cable is fastened on the wellhead, on another device near the wellhead or is anchored in the seabed close to the wellhead. By doing so, the deflection element is placed and fixed close to the wellhead. One or more anchoring elements can be placed and fixed close to the wellhead by means of one anchoring cable.

[0016] The loop-like deflection element is preferably a shackle. The anchoring cable and/or the guiding cable are preferably steel cables. The deflection element might alternatively be a sheave or pulley.

[0017] The anchoring cable is preferably taken down from the workspace to the wellhead by means of one or more remotely operated underwater vehicles (ROV). The fastening of the anchoring cable to the wellhead or to another device near the well head or the anchoring of the anchoring cable in the seabed and the placing and fixation of the deflection element close to the wellhead is preferably also carried out by the at least one ROV.

[0018] Furthermore, also the guiding cable can be taken down from the workspace to the wellhead by means of one or more remotely operated underwater vehicles (ROV). The ROV’s can also be used to pass the guiding cable with its head end through the deflection element and to bring the guiding cable with its head end side back to the workspace.

[0019] In a preferred further development of the invention, not only one but two or more and most preferably three guiding cables are provided to take the sealing element down to the wellhead and to place it atop the wellhead.

[0020] For this several deflection elements, namely one deflection element for each guiding cable, are placed and fixed in distance to each other around the wellhead. The deflection elements are preferably located around the wellhead in equal circumferential distances.

[0021] As already described above in connection with one guiding cable, each guiding cable is lowered with its head end, i.e. taken down from the corresponding workspace to the wellhead. Afterwards each guiding cable is passed, i.e.
looped, with its head end through the corresponding deflection element. Hence, each deflection element forms a point of reversal. Afterwards each guiding cable is pulled, i.e. brought back with its head end to the workspace while in return additional guiding cable is supplied on the lowering side and passed through the corresponding deflection element.

[0022] The sealing element is fastened to each guiding cable, wherein the guiding cables are affixed distanced from each other around the sealing element. The guiding cables are preferably affixed at equal circumferential distances around the sealing element. The term “around” means in this connection around the vertical axis of the sealing element in operating position. Basically this vertical direction corresponds to the direction of gravitation.

[0023] The application of two or more, preferably three guiding cables, allows the precise positioning of the sealing element above and in the wellhead. Particularly by using three or more guiding cables, the sealing element can be reliably positioned and exactly aligned and hold above the wellhead despite of the outflowing oil and gas.

[0024] The lowering of the sealing element is achieved by pulling the guiding cables on their head end side upwards and, in return, by supplying guiding cable in the direction of the wellhead on the lowering side. The positioning of the sealing element is achieved by applying a variable pulling force between the guiding cables. In this connection it is of course useful that the deflection elements are laterally displaced from the center of the wellhead, so that the orientation of the guiding cable section between the lowest fixing position on the sealing element and the deviating point on the deflection element has a vertical and horizontal component. However, the deflection elements should preferably not be located laterally too far off in order to maintain a vertical component of orientation of said cable section which is not too small.

[0025] The guiding cables are preferably lowered forming different workspaces, which are preferably boats or at least some of it are boats. The workspaces, i.e. the boats, are located above the sea level and are laterally displaced from the wellhead. Preferably each guiding cable is lowered from its own workspace. If three or more guiding cables are lowered from three or more workspaces to the wellhead, the workspaces are preferably arranged in a polygonal alignment around and laterally displaced from the wellhead, wherein the vertical axis which passes through the wellhead is preferably the geometrical center point of the polygonal structure.

[0026] Each guiding cable is preferably affixed to the sealing element in two positions, which are arranged on the sealing element above each other in a vertical direction of the sealing element in operation position. Hence, for every guiding cable at least a pair of fixing positions is provided at the sealing element. The fixing positions can e.g. be lugs on the sealing element on which the cable are attached. The pairs of fixing positions are arranged distanced from each other around the sealing element. They are preferably arranged equally distanced from each other in circumferential direction of the sealing element.

[0027] According to a preferred embodiment of the invention three guiding cables are provided, each of which is fastened to the sealing element on two positions which lie above each other in vertical direction, so that the sealing element can be guided and aligned via the six fastening positions, hence featuring six degrees of freedom. Basically, the guiding cable can also be interrupted, wherein a first end is fastened to a first fixing position and a second end is fastened on a second fixing position below the first fixing position of the sealing element.

[0028] The guiding cables are preferably pulled upwards on their head end side by means of a winch, located on the corresponding workspace. If the workspace is a boat floating on the sea, the winch is preferably of a heave compensation winch in order to eliminate or reduce the effect of movement of the boat on the position and orientation of the sealing element.

[0029] The sealing element is preferably a plug, which is placed on the wellhead and at least partially inserted into the open hole or opening of the wellhead. The plug can be tapered towards the wellhead to achieve a wedge-effect when plugging the sealing element into the opening of the wellhead. The plug is preferably rounded, pointed or conical on the bottom facing the opening of the wellhead in order to evenly disperse the pressure coming from the wellhead. The opening may be, for example, a broken pipe at the wellhead or a blowout preventer, or at another location along a sub-sea manifold or a pipeline leading away from a wellhead.

[0030] In a further development of the invention the anchoring cable is a steel wire lasso which is placed, e.g. by means of one or more ROV, around the wellhead and pulled tight to the wellhead to build a locking loop. Onto the anchoring cable and preferably onto the locking loop one or more shackles are attached. It is also possible that for every shackle one separate anchoring cable, as above described, is applied. Furthermore, the deflection element, particularly the shackle, can also be pre-installed on the wellhead as a precautionary measure during the installation of the wellhead device or the blowout preventer or another device on the wellhead.

[0031] The sealing element can be a closed plug which seals off the wellhead. However, it is also possible that the sealing element features a passage. On the passage of the sealing element outside the wellhead a pipe can be attached, so that, when the sealing element is in the sealing position on the wellhead, oil and/or gas can be discharged in a controlled manner through the plug. Of course the sealing element can be equipped with further features, e.g. anchoring means for anchoring the sealing element within the borehole, as e.g. an expandable screw in front of the sealing element.

BRIEF DESCRIPTION OF THE DRAWINGS

[0032] The subject matter of the invention will be explained in more detail in the following text with reference to preferred exemplary embodiments which are illustrated in the attached drawings, in which the following figures show:

[0033] FIG. 1: a schematical view of the wellhead sealing arrangement according to the invention;

[0034] FIG. 2: a schematical view of the sealing element according to the invention.

[0035] The reference symbols used in the drawings, and their meanings, are listed in summary form in the list of reference symbols. In principle, identical parts are provided with the same reference symbols in the figures.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0036] FIG. 1 shows a wellhead 8 from which oil 15 spills in an uncontrolled manner and under high pressure into the open sea. The wellhead 8 is located on the seabed 11 far below the sea level 12.
Three boats 2.1, 2.2, 2.3 are positioned above the wellhead 8 and laterally displaced from the wellhead 8. The connection between the boats forms a triangle wherein the vertical line 21 passing through the wellhead 8 lies within this triangle. From one of these three boats 2.1 an anchoring cable 3 in the form of a steel wire lasso is taken down to the wellhead 8 by an ROV 10. On the steel wire lasso 3 three shackles 7.1, 7.2, 7.3 are fixed. The steel wire lasso 3 is placed by means of the ROV 10 around the wellhead 8 and pulled right to the wellhead 8 to form a locking loop 13. The shackles 7.1, 7.2, 7.3 are attached to the locking loop 13 and hence are arranged close to the wellhead 8. The steel like lasso 3 is attached to the wellhead in a manner that the three shackles 7.1, 7.2, 7.3 are arranged around the circumference of the wellhead distance from each other. Of course the shackles 7.1, 7.2, 7.3 are preferably arranged around the wellhead in equal or almost equal distances from each other. Of course, it is also possible that from each of the three boats an anchoring cable, each in the form of a steel wire lasso, and each with one shackle fixed, on it is taken down and individually fixed on the wellhead 8 as above described (not shown in the figures).

Further, from each of the three boats 2.1, 2.2, 2.3 a guiding cable 4.1, 4.2, 4.3 each in the form of a steel wire is taken down to the wellhead 8 by an ROV 10. Each guiding cable 4.1, 4.2, 4.3 is looped, i.e. passed with its head end, through the corresponding shackle 7.1, 7.2, 7.3.

[0039] The shackles 7.1, 7.2, 7.3 form a point of reversal 17 for the guiding cables 4.1, 4.2, 4.3. The guiding cables 4.1, 4.2, 4.3 are now, with their head end side pulled upwards and back to the boat, e.g. also by means of an ROV. In return, additional guiding cable 4.1, 4.2, 4.3 is supplied on the lowering side 160 and passed through the shackle 7.1, 7.2, 7.3. Each guiding cable 4.1, 4.2, 4.3 now forms a kind of open loop with a reversal point 17 on the corresponding shackle 7.1, 7.2, 7.3. The reversal point 17 divides the guiding cable 4.1, 4.2, 4.3 into a pulling section 168, where the guiding cable 4.1, 4.2, 4.3 is pulled upwards to the boat 2.1, 2.2, 2.3 and a lowering section 16a, where the guiding cable 4.1, 4.2, 4.3 is lowered to the wellhead 8.

[0040] A sealing element 6 in the form of a tapered plug is fastened to all three guiding cables 4.1, 4.2, 4.3 on the lowering section 16a. Each guiding cable 4.1, 4.2, 4.3 is attached to the plug 6 via an upper and lower fixing position 9.1a, 9.1b; 9.2a, 9.2b; 9.3a, 9.3b (only shown in FIG. 2). This way the plug 6 can be moved with six degrees of freedom 20. The fixing points are in the form of lugs 9.1a, 9.1b; 9.2a, 9.2b; 9.3a, 9.3b. The pairs of lugs 9.1a, 9.1b; 9.2a, 9.2b; 9.3a, 9.3b are arranged in distance, preferably in equal distances to each other around the circumference of the plug 6.

[0041] By pulling on the guiding cables 4.1, 4.2, 4.3 on the pulling section 16b and winding them up, the plug 6 is lowered together with the guiding cables 4.1, 4.2, 4.3 on their lowering section 16a.

[0042] By applying a variable pulling force between the guiding cables 4.1, 4.2, 4.3 the orientation of the plug 6 in the space can be changed. Once the plug 6 has reached the wellhead 8, it can be placed above the wellhead and can be at least partially inserted into the borehole by applying an adequate pulling force on the guiding cables 4.1, 4.2, 4.3 in order to seal off the wellhead. It is important that the reversal point 17 of the guiding cables 4.1, 4.2, 4.3 lies, when the sealing element is placed in its definitive sealing position, below or at the same height as the lowest fixing point 9.1b, 9.2b, 9.3b of the guiding cable 4.1, 4.2, 4.3 on the plug 6. In this way the plug 6 can be safely placed on the wellhead 8 as a vertical force 22 can be exerted on the plug 6 by means of the guiding cables 4.1, 4.2, 4.3 till the plug 6 is firmly positioned and fixed on, i.e. in the wellhead 8.

[0043] Once the plug 6 is fixed and secured on the wellhead 8 the guiding cables 4.1, 4.2, 4.3 and the anchoring cable 3 can be detached from the plug 6 and from the wellhead 8 and can be removed.

LIST OF DESIGNATIONS

1. Wellhead sealing arrangement
2. 2.1...2.3 Boats
3. Anchoring cable
4. 4.1...4.3 guiding cables
5. 5.1...5.3 Winches
6. Sealing element, Plug
7. 7.1...7.3 Shackles
8. Wellhead
9a...9.3a upper Lugs
9b...9.2b lower Lugs
10. ROV
11. Sea bed
12. Sea level
13. Locking Loop
14. Well Opening
15. Oil
16a. Lowering section of the guiding cable
16b. Pulling section of the guiding cable
17. Reversal point of the guiding cable
18.1...18.3 winches
19. Winch
20. Degrees of freedom

1. Method for sealing opening of a sub-sea oil and/or gas wellbore at the wellhead, comprising the steps of: placing and fixing at least one loop-like deflection element close to the wellhead; lowering at least one guiding cable with its head end from a workspace above the wellhead, particularly above the sea level, in the direction of the wellhead; looping the guiding cable with its head end through the deflection element, wherein the deflection element forms a point of reversal for the guiding cable; pulling back the guiding cable with its head end side to the workspace while in return additional guiding cable is supplied and passed through the deflection element; lowering a sealing element which is fastened on the guiding cable in direction of the well head by pulling the guiding cable at its head end side upwards and by supplying guiding cable in the direction of the wellhead on the lowering side; placing the sealing element on the opening of the wellhead by further pulling the guiding cable at its head end side and thereby sealing the wellbore with the sealing element.

2. Method according to claim 1, wherein the loop-like deflection element is a shackle.

3. Method according to claim 1, wherein the point of reversal of the deflection element lies, when the sealing element is placed in its sealing position, lower or at the same height than the lowest fixing point of the guiding cable on the sealing element.
4. A method according to claim 1, wherein the workspace is a boat or a working platform, as e.g. an offshore platform.

5. A method according to claim 1, wherein the guiding cable is made of metal and preferably is a steel cable.

6. A method according to claim 1, further comprising the steps of:
 lowering an anchoring cable with the loop-like deflection element fastened on it from a workspace above the wellhead, particularly above the sea level, in direction of the wellhead;
 fastening the anchoring cable on the wellhead or on another device near the wellhead or anchoring the anchoring cable in the seabed close to the wellhead, thereby placing and fixing the deflection element close to the wellhead;

7. A method according to claim 1, comprising the step of:
 placing the sealing element on the wellhead by inserting the sealing element at least partially into the borehole of the wellhead.

8. A method according to claim 1, comprising the step of:
 lowering, e.g. taking down, and fastening the anchoring cable on the wellhead or on another device near the wellhead or anchoring the anchoring cable in the seabed, and placing and fixing the deflection element close to the wellhead by means of one or more remotely operated underwater vehicles (ROV).

9. A method according to claim 1, comprising the step of:
 lowering, e.g. taking down, and looping the guiding cable through the deflection element and pulling the cable with its head end side back to the workspace by means of one or more remotely operated underwater vehicles (ROV).

10. A method according to claim 1, comprising the step of:
 placing and fixing several, preferably three, deflection elements around the wellhead, preferably in equal circumferential distances around the wellhead;
 for each deflection element lowering a guiding cable with its head end from one or several, preferably three workspaces in the direction of the wellhead;
 looping each guiding cable with its head end through the corresponding deflection element, wherein each deflection element forms a point of reversal;
 pulling back each guiding cable with its head end side to the corresponding workspace while in return additional guiding cable is supplied and passed through the corresponding deflection element;
 lowering a sealing element which is fastened to each guiding cable in direction of the wellhead by pulling the guiding cables at their head end sides upwards and, in return, supplying the guiding cables in the direction of the wellhead on the lowering side, wherein the guiding cables are attached at a distance from each other around the sealing element, preferably at equal circumferential distances around the sealing element.

11. A method according to claim 10, wherein each guiding cable is affixed to the sealing element at two locations, which are arranged on the sealing element above each other in a vertical operation direction.

12. A method according to claim 11, wherein the fixing positions are defined by lugs which are attached to the sealing element.

13. A method according to claim 11, wherein the pairs of fixing positions, for each guiding cable a pair of fixing positions is provided, are arranged distanced from each other around the sealing element, preferably equally distanced from each other in circumferential direction.

14. A method according to claim 1, wherein the sealing element is a plug, preferably a plug which is tapered towards the wellhead, that is, substantially downward along vertical direction of operation.

15. A method according to claim 10, wherein three guiding cables are provided, each of which is fastened to the sealing element on two positions which lie above each other in vertical direction of operation, so that the sealing element can be guided and aligned via the six fastening positions, hence allowing for six degrees of freedom for controlling position and orientation of the plug.

16. A method according to claim 1, wherein the guiding cable is pulled upward at its head end side by means of a winch, located on the workspace.

17. A method according to claim 16, wherein the workspace is a boat floating on the sea and the guiding cable is pulled upward at its head end side by means of a winch, located on the boat, and wherein the winch is a hoist compensation winch in order to eliminate or reduce the effect of movement of the boat on the position and orientation of the sealing element.

18. A method according to claim 6, wherein the anchoring cable is a steel wire lasso which is placed, e.g. by means of one or more ROVs, around the wellhead and pulled tight to the wellhead to form a locking loop, whereby the anchoring cable and preferably the locking loop has at least one shackle attached.

19. A method according to claim 1, wherein the sealing element features a passage on which a pipe can be attached outside the wellhead, and through which, when the sealing element is in the sealing position on the wellhead, oil and/or gas can be discharged in a controlled manner.

20. A wellhead sealing arrangement for carrying out the method according to claim 1, wherein the arrangement comprises:
 at least one deflection element placed close to the wellhead;
 at least one guiding cable being looped through the deflection element and forming an open loop with a pulling section and a lowering section
 a workspace above the wellhead, particularly above the sea level, and at least one winch device by means of which the guiding cable can be lowered at its lowering section and can be pulled upwards at its pulling section;
 a sealing element for sealing the wellhead, wherein the sealing element is fastened to the guiding cable on its lowering section.

21. An arrangement according to claim 20, comprising:
 more than one deflection element placed and fixed close to the wellhead, wherein the deflection elements are placed around the circumference of the wellhead at a distance from each other;
 for each deflection element a guiding cable being looped through the corresponding deflection element and forming an open loop with a pulling section and a lowering section
 for each guiding cable a workspace above the wellhead, particularly above the sea level, and at least one winch...
by means of which the guiding cable can be lowered at its lowering section and can be pulled upwards at its pulling section;

a sealing element for sealing the wellhead, wherein the sealing element is fastened to all of the more than one guiding cables on their lowering section.

22. A sub-sea wellhead arrangement wherein at least one deflection element, particularly a shackle, is fixed on the wellhead or on a device close to the wellhead, in particular is fixed on the outside of a wellhead device for carrying out the method according to claim 1.

23. A sub-sea wellhead arrangement with a sealing element, particularly a plug, placed on the opening of the wellhead by the method of claim 1 in order to seal off the wellhead and to stem the spill out of oil and/or gas.

* * * * *