ARRANGEMENT FOR ESTABLISHING A CONNECTION BETWEEN TWO CABLE SUPPORT DEVICE ELEMENTS AND CONNECTION ELEMENTS

Inventor: Ernst-Günther Jordan, Menden (DE)

Correspondence Address:
PATENT LAW OFFICES OF RICK MARTIN, PC
PO BOX 1839
LONGMONT, CO 80502 (US)

Assignee: Obo Bettermann GmbH & Co. KG, Menden (DE)

Appl. No.: 11/993,826
PCT Filed: May 31, 2006
PCT No.: PCT/EP06/62801
§ 371 (c)(1), (2), (4) Date: Jul. 23, 2008

Foreign Application Priority Data
Jun. 28, 2005 (DE) 202005010108.7

Publication Classification
Int. Cl.
H01B 7/00 (2006.01)

ABSTRACT

An arrangement serves for establishing a connection between two cable support device elements 1, 4 disposed in the region of a connection section 2, 7 such that they overlap for forming a cable support system utilizing at least one connection element 12 retaining together the two cable support device elements 1, 4. It is herein provided that each cable support device element 1, 4 within its connection section(s) 2, 7 has (have) at least one contact face 6, 23, on which, after the cable support device elements 1, 4 have been connected, is in contact with a contact face 23, 6 of the other cable support device element 4, 1 and each contact face 6, 23 is delimited on two sides by breakthroughs 5, 5' extending through the particular connection section 2, 7 bearing the contact face 6, 23, and/or by an edge 9 of the connection section 7. The connection element 12 comprises a press-on section 13 and two latching arms 14, 14', disposed on different sides with respect to the press-on section 13, with each one connection limb 16 extending in a transverse direction to the extent of the press-on section 13, and with a hook element 17 disposed on the free end of the connection limb 16. The latching arms 14, 14' are disposed with their connection limbs 16 for extending through or girdling the connection section 2, 7 bearing a contact face 6, 23. At least one of the latching arms 14, 14' has at least sectionally spring-elastic material properties. The connection element 12 mounted for retaining together the two cable support device elements 1, 4 is stayed under spring prestress with its press-on section 13 on the surface of the connection section 7 of the one cable support device element 4 and with its hook elements 17 on the opposite surface of the connection section 2 of the other cable support device element 1.

Further claimed is a connection element 12 for establishing such a connection with said characteristics as such.
ARRANGEMENT FOR ESTABLISHING A CONNECTION BETWEEN TWO CABLE SUPPORT DEVICE ELEMENTS AND CONNECTION ELEMENTS

CROSS REFERENCE APPLICATIONS

[0001] This application is a national stage application of PCT application no. PCT/EP2006/062801 filed on May 31, 2006 and claiming priority from German application 20200510108.7 filed on Jun. 28, 2005.

BACKGROUND

[0002] The invention relates to establishing a connection between two cable support device elements with overlapping connection sections for the formation of a cable support system. At least one connecting element attaching the two cable support device elements together.

[0003] The invention further relates to a connecting element for establishing a mechanical connection between two cable support device elements disposed with overlapping connection sections for the formation of a cable support system.

[0004] The prior art individual cable support device elements can be connected to each other without tools. However, the development of the necessary connection members, such as for forming, notches and the like, require significant technical expenditures.

[0005] The prior art individual cable support device elements can be connected to one another without tools. However, the development of the necessary connection members, such as for forming, notches and the like, require significant technical expenditures.

SUMMARY

[0011] The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools and methods which are meant to be exemplary and illustrative, not limiting in scope. In various embodiments, one or more of the above described problems have been reduced or eliminated, while other embodiments are directed to other improvements. This problem is solved according to the invention through an arrangement described in the introduction, in which

[0012] each cable support device element within its connection section(s) comprises at least one contact face on which, after the cable support device elements are connected, one face of the cable support device element is in contact with each contact face is delimited on two sides by the particular breakthroughs extending through the particular connection section bearing the contact face and/or an edge of the connection section.
[0013] the connection element comprises a press-on section and two latching arms disposed on different sides with respect to the press-on section each with connection limbs extending in a transverse direction with respect to the extent of the press-on section and with a hook element disposed at the free end of the connection limb, which latching arms with their connection limbs are disposed for the extension through or girding of the connection section bearing a contact face and of which latching arms at least one has at least sectionally spring-elastic material properties, and

[0014] the connection element mounted for retaining together the two cable support device elements under spring loading is stayed with its press-on section on the surface of the connection section of the one cable support device element and with its hook elements on the opposite surface of the connection section of the other cable support device element.

[0015] This problem is further solved through a connection element of the type described in the introduction, in which the connection element comprises a press-on section and two latching arms disposed on different sides with respect to the press-on section with connection limbs each extending in a transverse direction to the extent of the press-on section and with a hook element disposed at the free end of the connection limb. The latching arms are disposed with their connection limbs for extending through or girding the connection section bearing a contact face and at least one of the latching arms has at least sectionally spring-elastic material properties.

[0016] With this disposition, the cable support device elements can be connected together. The cable support device elements can be developed as cable ducting, cable channels, cable conduits or the like, independently of their particular material condition. The cable support device elements only need a connection section overlapping a connection section of the other cable support device element to connect. Both connection sections only need to have breakthroughs and/or inclusions as marginally open breakthroughs in order to form a defined contact face. The contact faces of the two cable support device elements to be connected are disposed such that the contact faces of the two connection sections are aligned with respect to one another, preferably in contact on one another. Such development of the connection section is readily possible independent of the material utilized for the construction of a cable support device element and also independent of its thickness.

[0017] The actual mechanical connection between the two cable support device elements takes place by utilizing a connection element with the two adjacent disposed contact faces of the overlapping connection section fixed with respect to one another and the contact faces pressed against one another with a defined press-on pressure. The connection element comprises a press-on section and two latching arms disposed on different sides of the press-on section for the mechanical fixing of the two cable support device elements with respect to one another. The latching arms extend with their connection limb through adjoining connection sections of the two cable support device elements and function as latches to form-fittingly connect the two connection sections with one another. The dimensioning of the latching arms of the connection elements and the breakthroughs or inclusions of the connection sections of the cable support device elements are usefully matched to one another. This means that the distance that the two breakthroughs are spaced apart from one another corresponds to the height of the connection limbs, or is minimally greater than the height of the connection limbs. This allows for the connection limbs to be readily guided through the breakthroughs. The connection element is fixed with little or no play on that connection section with the breakthroughs spaced apart with respect to one another at the level of the connection limb. The inner clearance of the breakthroughs corresponds to the distance of the connection limbs of the latching arms in such manner that the mounted connection element is also held free of play in the transverse direction with respect to the height of the connection limbs and any resilience is caused by the material elasticity of the connection limbs.

[0018] The latching arms of a connection element have a hook element at their free end which extends behind the breakthrough of a connection section. On the one top side of the connection section the press-on section is in contact. On the opposing top side of the breakthrough of the other connection section is stayed the connection element with its hook elements. The latching arms are provided in such form that the mounted connection element is held under a certain spring prestress with its press-on section on the one top side of a connection section. At least one of the two latching arms, usefully both, comprise spring-elastic material properties to allow the prestress. According to a preferred embodiment example the entire connection element is produced of a sheet of spring steel.

[0019] With such a connection element, two overlapped connection sections of two cable support device elements can be mechanically connected with one another in a simple, tool free manner. According to an embodiment example, both connection sections have breakthroughs aligned with one another for delimiting the particular contact faces when overlapped properly, and the latching arms of the connection element associated with a contact face are guided through the breakthroughs until the hook elements become stayed on the surface of the opposing connection section.

[0020] The contact faces of the overlapping connection sections of the two cable support device elements are in contact with one another under defined press-on force due to the defined prestress applied by the latching arms, which is desirable for developing an electrical connection of the two cable support device elements. Through the connection element a precise mechanical and defined electrical connection of two cable support device elements takes place. The spacing of the breakthroughs for guiding through the latching arms defines inter alia the size of the contact face with which the two connection sections are in contact. Utilizing a connection element with at least two latching arms spaced apart from one another around a contact face, makes feasible the formation of the connection element in such manner that the two contact faces to be connected with one another can be retained in contact with an already acting press-on force.

[0021] The connection sections of the two cable support device elements are usefully located in the side walls. Each of these includes one or more contact faces, depending on the height of the side walls. A corresponding number of connection elements are utilized to establish the desired connection.

[0022] In a preferred embodiment, each cable support device includes at its end one complementarily formed connection section.

[0023] The connection elements required for the establishment of a mechanical connection with a further cable support device element are usefully pre-mounted on the first connec-
tion section. Specifically on the connection section with contact faces formed by two breakthroughs spaced apart from
one another. To connect the connection section with pre-mounted connection elements, the contact face of the comple-
mentary connection section of the other cable support device element has inscriptions as marginally open breakthroughs,
such that a connector tongue is developed as a blade terminal element. This can be formed by two inscriptions spaced
apart from one another or through an inscription and an edge of the connection section. To establish the desired connection, the
connector tongue is slid under the press-on section of the connection element mounted on the other connection section.
It is useful if the connection elements comprise an outwardly projecting run-up ramp directed toward the connector tongue
to be slid in to facilitate this mounting. This ramp is preferably located at the free end of an additional latching extension on
each connection element. This additional latching extension can have an inwardly projecting locking latch which engages
a locking latch recess of the connection section after the two cable support device elements are assembled as intended.
Both cable support device elements are subsequently also latched in the joining direction through the locking latch
engaging into the locking latch recess. The run-up ramp can be utilized for detaching such a connection by sliding in a
tool, for example a screw driver, with which the locking latch can be lifted out of the locking latch recess.

[0024] In addition to the exemplary aspects and embodiments described above, further aspects and embodiments will
become apparent by reference to the accompanying drawings forming a part of this specification wherein like reference
characters designate corresponding parts in the several views.

BRIEF DESCRIPTION OF THE DRAWINGS

[0025] FIG. 1 is a top view of an arrangement for establishing a mechanical connection between two cable support
device elements.

[0026] FIG. 2 is a schematic longitudinal section through one of the two cable support device elements with a pre-mounted
connection element.

[0027] FIG. 3 is a side view of the arrangement of FIG. 1 when assembling the two cable support device elements.

[0028] FIG. 4 is a partial longitudinal section of the two cable support device elements connected together

[0029] FIG. 5 is a schematic side view of two cable ducts connected with one another according to a further embodiment
example.

[0030] FIGS. 6a-c are a top, side and perspective view of a connection element.

[0031] Before explaining the disclosed embodiment of the present invention in detail, it is to be understood that the
invention is not limited in its application to the details of the particular arrangement shown, since the invention is capable
of other embodiments. Exemplary embodiments are illustrated in referenced figures of the drawings. It is intended that
the embodiments and figures disclosed herein are to be considered illustrative rather than limiting. Also, the terminology
used herein is for the purpose of description and not of limitation.

DETAILED DESCRIPTION OF THE DRAWINGS

[0032] A cable duct 1 as a first cable support device element has at one end a connection section 2, to the left in FIG. 1.
FIG. 1 has the cable duct 1 in a side view and, thus, shows the one side wall 3 of the cable duct 1. The connection section 2
forms the end section of the cable duct 1 and serves for connecting the cable duct 1 with a further cable duct 4 formed
as a second cable support device element. Connection section 2 of the cable duct 1 has two elongated vertical breakthroughs
5, 5′ spaced apart from one another. The breakthroughs 5, 5′ are circumferentially closed and laterally border a contact
face 6, formed of wall segment 6 located between the two breakthroughs 5, 5′. The two cable ducts 1, 4 include at each of
their two ends identical connection sections for the formation of a cable support system. Therefore the cable duct 1
includes at its other end (not shown) a connection section corresponding with the connection section 7 of the cable duct
4. The cable duct 4 also includes at its end (not shown) a connection section which is structured like the connection
section 2 of cable duct 1.

[0033] The connection section 7 of the cable duct 4 is formed by crimping, which increases the cross sectional area
of the cable duct. The connection section 7 is thus formed as a sleeve for receiving the connection section 2 of cable duct 1,
such that the two connection sections 2, 7 can be partially overlapped. Connection section 7 has a connector tongue 8
formed by the front edge 9 of the connection section 7 and by an inscription 10 terminating at the upper edge of connection
section 7. The backside of the connector tongue 8 forms the contact face of the connection section 7. The width of the
connector tongue 8 corresponds approximately to the width of the spacing of the breakthroughs 5, 5′ of the connection
section 2 of cable duct 1. The connector tongue 8 is delimited on the underside by a locking latch reception 11. The cable
ducts 1, 4 depicted in the embodiment example are produced of a zinc-plated sheet metal.

[0034] Referring next to FIGS. 6a-c, connection elements 12 are used, in addition to the connection sections 2, 7 of the
cable ducts 1, 4; to connect the two cable ducts 1, 4 with the desired mechanical. The number of utilized connection ele-
ments 12 is dependent on the number of contact faces which a connection section 2, 7 bears. Connection element 12 is
depicted in FIG. 6a in a top view, a side view in FIG. 6b and a slightly oblique perspective view in FIG. 6c. The connection
element 12 is produced by reshaping a piece of spring steel sheet metal. The connection element 12 includes a press-on
section 13, which contacts on the outside of the connector tongue 8 of the cable duct 4. Press-on section 13 has latching
arms 14, 14′ on opposing sides. The latching arms 14, 14′ are structured mirror-symmetrically with respect to one another.
The following description of the latching arm 14 applies to the latching arm 14′ as well.

[0035] The latching arm 14 is structured in the shape of an “S” and comprises a first arc segment 15 extending outwardly
from the press-on section 13. Adjoining the arc segment 15 is a connection limb 16, which bears at its free end a hook
element 17. The hook element 17 in the depicted embodiment example is also formed as an arc piece so that the latching
arm 14 has an overall S-shaped formation. As is evident in the top view of the connection element 12 of FIG. 6c, the free end
18 of hook element 17 is located behind the plane of the backside of the press-on section 13. This virtual plane is denoted
in FIG. 6c by the reference number 19. The latching arm 14 is spring-elastic in the direction of plane 19 as well as in the
transverse direction due to the material elasticity and the shape.

[0036] A latching extension 20 is formed onto the lower end of the press-on section 13. At the lower end of latching
extension 20 there is an outwardly projecting run-up ramp 21 and an inwardly projecting locking latch 22 spaced apart from the run-up ramp 21 in the direction of the press-on section 13. As is evident in the side view, FIG. 6b, of the connection element 12, the locking latch 22 is upwardly inclined toward the press-on section 13 such that its underside represents a quasi run-up ramp.

[0037] Referring next to FIGS. 3 and 4, the latching arms 14, 14' of the connection element 12 extend through the breakthroughs 5, 5' such that the free ends 18 of the hook elements 17 are held on the backside of the wall 3 of the connection section 2 of the cable duct 1. The insertion 10 also serves as a guide for a section of the latching arm 14, namely the connection limb 16. The locking latch reception 11 serves for receiving the locking latch 22.

[0038] In use the connection element(s) 12 is(are) pre-mounted on the cable duct 1 before the two cable ducts 1, 4 are connected together. The partial longitudinal section of FIG. 2 shows the connection element 12 pre-mounted on the connection section 2 of the cable duct 1. The connection element 12 is stayed with the free ends 18 of a latching arm 14, 14' on the inside of wall 3 of the connection section 2. The locking latch 22 is in contact on the outside with the contact face 6. In an embodiment example not depicted in the Figures, a recess is located below the contact face 6 of the connection section 2 for receiving the locking latch 22 corresponding to the locking latch reception 11 of the cable duct 4. In such an embodiment the connection element 12 pre-mounted on the cable duct 1 is in planar contact with the press-on section 13 on the contact face.

[0039] To connect the two cable ducts 1, 4 the cable duct 1 with its two connection elements 12 pre-mounted on the opposing walls is set with a vertical joining movement into the connection section 7, formed in the manner of a sleeve, of the cable duct 4, indicated by arrow in FIG. 3. During this process the connector tongue 8 is moved between the press-on section 13 of connection element 12 and the contact face 6 of connection section 2 of the cable duct 1. This is readily possible due to the lower run-up ramp 21 of the connection element and the upwardly directed, bent-off disposition of the locking latch 22. As a consequence of the material-elastic formation of latching arms 14, 14', locking latch 22 automatically snaps into the locking latch reception 11 of connection section 7 of cable duct 4 after the two cable ducts 1, 4 have been properly assembled. The bent pitching of the locking latch 22 subsequently acts as a counterhool element such that the disassembly of the two cable ducts 1, 4 is not readily possible.

[0040] The two connected cable ducts 1, 4 are depicted in FIG. 4. This illustration makes clear that the press-on section 13 of connection element 12 is in contact over the entire area on the outside of the connector tongue 8 after the locking latch 22 has snapped into the locking latch reception 11. Due to the prestress provided through the latching arms 14, 14' and transmitted onto the press-on section 13, the backside of the connector tongue 8—the contact face 23 of the connection section 7—is pressed onto the contact face 6 of the connection section 2 of the cable duct 1. Consequently both contact faces 6, 23 are under a press-on force predefined through the prestress of the latching arms 14, 14'. The area of the contact faces 6, 23 in contact with one another and the defined press-on force with which the two contact faces 6, 23 are in contact on one another permits the formation of a defined electrical connection of the two cable ducts 1, 4, such that this connec-

[0041] FIG. 5 depicts two cable ducts 24, 25 connected with one another which are in principle connected in the same manner as has been explained in connection with the previously described embodiment example of FIGS. 1 to 4. In contrast to the embodiment example of FIGS. 1 and 4, where the two cable ducts 1, 4 are connected by a vertical joining movement, the joining together of the cable ducts 24, 25 is carried out by a horizontal joining movement. For these reasons connection elements 12 pre-mounted on the cable duct 24, are rotated by 90° E with respect to the FIG. 4 disposition on the cable duct 1 and are disposed with their latching extension 20 toward the cable duct 25. In the depicted embodiment example two superjacent connection elements 12 are provided due to the wall height of the cable ducts 24, 25. The connection section 26 of the cable duct 25 is formed in the manner of a sleeve and has two connector tongues 27, 28. The connector tongues have been slid under the press-on section of the connection elements 12 in the process of joining the two cable ducts 24, 25, and are subsequently with their insides in contact on the outside of the connection section of the cable duct 24.

[0042] The description of the invention makes clear that, through the described disposition, the two cable support device elements to be connected can be equipped with elements that have a simple construction, which are required for the connection of the two cable support device elements utilizing the above described connection elements. The connection is possible in simple manner that is free of tools. The connection element(s)—as described—is(are) usefully already pre-mounted on a connection section of a cable support device element. Nevertheless, mounting the connection elements is also possible in situ during the formation of the cable support system. An identical connection of two cable support device elements in particular takes place independently of their material or also their material thickness. For different material thicknesses, differently dimensioned connection elements can be provided. The connection elements themselves have, moreover, a suitable site for the application of an identification due to the planar formation of their press-on section. Since the two cable support device elements can only be assembled according to a single joining movement, faulty mounting is avoided.

[0043] These explanations describe an embodiment example. Nevertheless, the claimed protection extends also to numerous other implementations which have not been explicitly described in these documents.

[0044] While a number of exemplary aspects and embodiments have been discussed above, those of skill in the art will recognize certain modifications, permutations, additions and sub-combinations therefore. It is therefore intended that the following appended claims hereafter introduced are interpreted to include all such modifications, permutations, addi-
tions and sub-combinations are within their true spirit and scope. Each apparatus embodiment described herein has numerous equivalents.

LIST OF REFERENCE NUMBERS

[0045] 1 Cable duct
[0046] 2 Connection section
[0047] 3 Wall
[0048] 4 Cable duct
[0049] 5, 5° Breakthrough
[0050] 6 Contact face
[0051] 7 Connection section
[0052] 8 Connector tongue
[0053] 9 Margin
[0054] 10 Insection
[0055] 11 Locking latch reception
[0056] 12 Connection element
[0057] 13 Press-on section
[0058] 14, 14° Latching arm
[0059] 15 Arc segment
[0060] 16 Connection limb
[0061] 17 Hook element
[0062] 18 Free end
[0063] 19 Plane
[0064] 20 Latching extension
[0065] 21 Run-up ramp
[0066] 22 Locking latch
[0067] 23 Contact face
[0068] 24 Cable duct
[0069] 25 Cable duct
[0070] 26 Connection section
[0071] 27 Connector tongue
[0072] 28 Connector tongue

1-11. (canceled)

12. A cable support system having at least two cable support device elements that can be mechanically connected in an electrically conducting manner, said cable support device elements disposed in the region of a connection section such that they overlap, said cable support system comprising:

- at least one connection element connecting two cable support device elements, wherein the connection element comprises a press-on section and two latching arms extending from different sides with respect to the press-on section;
- each latching arm having a connection limb extending in a transverse direction to the extent of the press-on section and having a hook element disposed at a free end of the connection limb;
- the connection element being mounted under spring prestress for retaining together the two cable support device elements;

said press-on section being on a surface of the connection section of one cable support device element and with said hook elements extending behind the connection section of the second cable support device element on an opposite surface of the connection section of the second cable support device element;

- each cable support device element connection section further comprises at least one electrical contact face in contact with an electrical contact face of the other cable support device element forming of a defined electrical connection of the two cable support device elements when the cable support device elements;

- each electrical contact face on is delimited two sides by breakthroughs extending through the connection section bearing at least one item selected from the group consisting of the electrical contact face and an edge of the connection section;

- said latching arms and connection limbs are configured to extend through the connection section bearing the electrical contact face, and

- at least one latching arm has spring-elastic material properties in at least a portion of the latching arm, whereby the electrical contact faces are in contact with one another under a defined press-on force.

13. The cable support system as claimed in claim 12, wherein:

- the cable support device elements further comprises two complementary connection sections, wherein at least at one connection section per contact face is formed by two breakthroughs spaced apart from one another;
- the breakthrough having a height corresponding substantially to a height of the connection limbs of the connection element;

- the distance of outer delimitations of the breakthroughs from one another is less than the distance of terminations of the hook elements of the connection element from one another; and

- wherein the other connection section contact faces are formed by two marginally open breakthroughs spaced apart from one another or by a marginally open breakthrough and an edge of the connection section for forming a blade terminal element.

14. The cable support system as claimed in claim 12, further comprising a locking latch on a connection section which is the outer of the two cable support device elements when connected.

15. The cable support system as claimed in one of claims 13, wherein the hook elements project from the particular connection limb such that the hook elements are directed in opposite directions.

16. The cable support system as claimed in claim 15, wherein the hook elements are disposed on the particular connection limb such that the hook elements are directed away from one another.

17. The cable support system as claimed in one of claims 13, wherein at least one connection arm is formed in the shape of an "S".

18. The cable support system as claimed in one of claims 12, wherein the latching arms are disposed on opposite sides of the press-on section.

19. The cable support system as claimed in claim 17, wherein at least one connection element further comprises an additional latching extension with an inwardly projecting locking latch.

20. The cable support system as claimed in claim 19, wherein a free end of the latching extension projects outwardly forming a run-up ramp.

21. A connection element for establishing a mechanical connection between two cable support device elements which overlap for forming a cable support system in a region of a connection section bearing an electrical contact face, wherein the connection element comprises:

- a press-on section and two latching arms extending from different sides of the press-on section each having a connection limb extending in a transverse direction to the extent of the press-on section;
a hook element disposed on a free end of the connection limb wherein the latching arms with their connection limbs are formed to extend through the connection section bearing an electrical contact face to form a defined electrical connection with a electrical contact face of a further connection section of a further cable support device element, and wherein at least one said latching arm has spring-elastic material properties in at least a section, whereby the electrical contact faces are in contact on one another with defined press-on force.

22. The connection element as claimed in claim 21, wherein the hook elements project from the particular connection limb such that they are directed in opposite directions.

23. The connection element as claimed in claim 22, wherein the hook elements are disposed on the particular connection limb such that they are directed away from one another.

24. The connection element as claimed in claim 22, wherein at least one connection arm is formed in the shape of an “S”.

25. The connection element as claimed in claim 21, wherein the latching arms are disposed on opposite sides of the press-on section.

26. The connection element as claimed in claim 24, wherein the connection element further comprises an additional latching extension with an inwardly projecting locking latch.

27. The connection element as claimed in claim 26, wherein a free end of the latching extension projects outwardly to form a run-up ramp.

28. The connection element as claimed in one of claims 21 to 23, wherein the connection element is premounted on a cable support device element.