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(57) ABSTRACT 

A method for coding and decoding seismic data acquired, 
based on the concept of multishooting, is disclosed. In this 
concept, waves generated simultaneously from several loca- 

mixtures and convolutive mixtures. Furthermore, the mix- 
tures can be underdetemined [i.e., the number of mixtures 
(K) is smaller than the number of seismic sources (I) 
associated with a multishot] or determined [i.e., the number 
of mixtures is equal to or greater than the number of 
sources). When mixtures are determined, we can reorganize 
our seismic data as zero-mean random variables and use the 
independent component analysis (ICA) or, alternatively, the 
principal component analysis (PCA) to decode. We can also 
alternatively take advantage of the sparsity of seismic data 
in our decoding process. When mixtures are underdeter- 
mined and the number of mixtures is at least two, we utilize 
higher-order statistics to overcome the underdeterminacy. 
Alternatively, we can use the constraint that seismic data are 
sparse to overcome the underdeterminacy. When mixtures 
are underdetermined and limited to single mixtures, we use 
a priori knowledge about seismic acquisition to computa- 
tionally generate additional mixtures from the actual 
recorded mixtures. Then we organize our data as zero-mean 
random variables and use ICA or PCA to decode the data. 
The a priori knowledge includes source encoding, seismic 
acquisition geometries, and reference data collected for the 
purpose of aiding the decoding processing. 

The coding and decoding processes described can be used to 
acquire and process real seismic data in the field or in 
laboratories, and to model and process synthetic data. 
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CODING AND DECODING: SEISMIC DATA 
MODELING, ACQUISITION AND 

PROCESSING 

[0001] This application claims the benefit of U.S. appli- 
cation No. 601894,685 filed Mar. 14, 2007, and of U.S. 
application No. 601803,230 filed May 25, 2006, and of U.S. 
application No. 601894,182 filed Mar. 9,2007, each of which 
is hereby incorporated herein by reference for all purposes. 

1 INTRODUCTION 

[0002] Thanks to these coding and decoding processes, a 
single channel can pass several independent messages 
simultaneously, thus improving the economics of the line. 
These processes are widely used in cellular communications 
today so that several subscribers can share the same channel. 
One classic implementation of these processes consists of 
dividing the available frequency bandwidth into several 
disjointed smaller-frequency bandwidths. Each user is allo- 
cated a separate frequency bandwidth. The voice signals of 
all users sharing the telephone line are then combined into 
one signal (coding process) in such a way that they can 
easily be recovered. The combined signal is transmitted 
through the channel. The disjointing of bandwidths is then 
used at the receiving end of the channel to recover the 
original voice signals (the decoding process). Our objective 
in this invention is to adapt coding and decoding processes 
to seismic data acquisition and processing in an attempt to 
further improve the economics of oil and gas exploration 
and production. 
[0003] Our basic idea in this invention is to acquire 
seismic data by generating waves from several locations 
simultaneously instead of from a single location at a time, as 
is currently the case. Waves generated simultaneously from 
several locations at the surface of the earth or in the water 
column at sea propagate in the subsurface before being 
recorded at sensor locations. The resulting data represent 
coded seismic data. The decoding process then consists of 
reconstructing data as if the acquisition were performed in 
the present fashion, in which waves are generated from a 
single shot location, and the response of the earth is recorded 
before moving to the next shot location. 
[0004] We call the concept of generating waves simulta- 
neously from several locations simultaneous multishooting, 
or simply multishooting. The data resulting from multi- 
shooting acquisition will be called multishot data, and those 
resulting from the current acquisition approach, in which 
waves are generated from one location at a time, will be 
called single-shot data. So multishot data are the coded data, 
and the decoding process aims at reconstructing single-shot 
data. 
[0005] There are significant differences between the 
decoding problem in seismics and the decoding problem in 
communication theory. In communication, the input signals 
(i.e., voice signals generated by subscribers who are sharing 
the same channel) are coded and combined into a single 
signal which is then transmitted through a relatively homo- 
geneous medium (channel) whose properties are known. 
Although the input signals are very complex, the decoding 
process in communication is quite straightforward because 
the coding process is well known to the decoders, as are 
most changes to the signals during the transmission process. 

[0006] In seismics, the input signals generated by seismic 
sources are generally simple. But they pass through the 
subsurface, which can be a very complex heterogeneous, 
anisotropic, and anelastic medium and which sometimes 
exhibits nonlinear elastic behaviors-a number of coding 
features are lost during the wave propagation through such 
media. Moreover, the fact that this medium is unknown 
significantly complicates the decoding problem in seismics 
compared to the decoding problem in communication. Sig- 
nals received after wave propagation in the subsurface are 
also as complex as those in communication. However, they 
contain the information about the subsurface that we are 
interested in reconstructing. The decoding process in this 
case consists of recovering the impulse response of the earth 
corresponding to each of the sources of the multishooting 
experiment. 
[0007] Over the last four decades, seismic imaging meth- 
ods have been developed for data acquired only sequentially, 
one shot location after another (i.e., single-shot data). 
[0008] Therefore, multishot data must be decoded in order 
to image them with present imaging technology until new 
seismic-imaging algorithms for processing multishot data 
without decoding are developed. In this invention, we 
describe in more detail the challenges of decoding multishot 
data as well as the approaches we will follow in subsequent 
later sections for addressing these challenges. 

SUMMARY 

[0009] Referring now to FIG. 11, two approaches for data 
gathering and analysis are described. 
[0010] FIG. l l (a )  shows a common way in which data 
gathering and analysis has been done in the prior art. A 
single shot acquisition is carried out and data are gathered 
(101), which may be over land or water. Any of a variety of 
well-known imaging software may be used to analyze the 
single-shot data (102). Imaged results are obtained, and in 
this way subsurface features are identified. 
[0011] FIG. ll(b) shows an embodiment of the invention. 
Instead of a single shot acquisition, what is carried out is a 
multishot, with collection of multishot data (103). Impor- 
tantly, the multishot data are then decoded (104) as 
described in detail herewithin. This yields a data set (here 
called a "proxy single-shot data") which can then be fed to 
any of the variety of well-known imaging software as if it 
were single-shot data. The result, as in FIG. l l (a )  is devel- 
opment of imaged results. 
[0012] As will be appreciated, what is described is a 
method of subsurface exploration using seismic orland EM 
data. The method calls for a sequence of steps. 
[0013] First, we acquire multisweep-multishot data gen- 
erated from several points nearly simultaneously. The acqui- 
sition can be carried out onshore or offshore. Alternatively, 
multisweep-multishot data can generated by computer simu- 
lation. We denote by K the number of sweeps and by I the 
number of shot points for each multishot location. 
[0014] If K=l (that is, if only one sweep is acquired using 
for example one shooting boat towing a set of airgun arrays), 
then we numerically generate at least one additional sweep. 
The additional sweep is generated using time delay (algo- 
rithms 7, 9, 10 and 1 I), reference shot data (algorithm 8), or 
multicomponent data (algorithms 12 and 13). 
[0015] If K=I, and a mixing matrix is known, then we 
perform the inversion of the mixing matrix to recover the 
single-shot data. 
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[0016] If K=I, and a mixing matrix is not known, then we 
use the PCA orland ICA to recover the single-shot data 
(algorithms 1, 2, 3, and 4) for instantaneous mixtures and 
algorithm 5 for convolutive mixtures. 

[ 617 ]  If K<I (with K equaling at least 2), then we use 
algorithm 6. 

FIGURES 

[0018] FIG. 1: Examples of the two types of source 
signatures encountered in seismic surveys: (a) the short- 
duration source signature such as the one used in FIGS. 2 
and 3 and (b) the long-continuous source signature in the 
form of the Chirp function. 
[0019] FIG. 2: Snapshots of wave propagation in which 
four shots are fired simultaneously from four points spaced 
50 m apart. The source signature is the same for the four 
shots, but their initial firing times are different. 
[0020] FIG. 3: An example of a multishot gather corre- 
sponding to the experiment described in FIG. 2. 
[0021] FIG. 4: Schematic diagrams illustrating the coding 
and decoding processes for seismic data processing. We first 
generate multisweep-multishot (MWIMX) data. Then we 
seek a demixing matrix that allows us to recover the single- 
shot gathers from MWIMX data. 
[0022] FIG. 5: The scatterplots of (left) the mixtures, 
(middle) whitened data, and (right) decoded data. We used 
seismic data in FIG. 6. 
[0023] FIG. 6: Examples of two mixtures of seismic data. 
[0024] FIG. 7: Whitened data of the mixtures of seismic 
data in FIG. 6. 
[0025] FIG. 8: The seismic decoded data. We have effec- 
tively recovered the original single-shot data. 
[0026] FIG. 9: Multisweep-multishot data obtained mix- 
tures of four single-shot gathers with 125-m spacing 
between two consecutive shot points. 
[0027] FIG. 10: The results of decoding the data in FIG. 9. 
We have effectively recovered the original single-shot data. 
[0028] FIG. 11: FIG. l l (a)  shows diagrammatically as a 
flowchart a common way in which data gathering and 
analysis has been done in the prior art. FIG. l l (b)  shows an 
embodiment of the invention. 

DETAILED DESCRIPTION 

2 AN ILLUSTRAION OF THE CONCEPT OF 
MULTISHOOTING 

2.1 An Example of Multishot Data 

[0029] Multishooting acquisition consists of generating 
seismic waves from several positions simultaneously or at 
time intervals smaller than the duration of the seismic data. 
To fix our thoughts, let us consider the problem of simulat- 
ing I shot gathers. Although the concept of multishooting is 
valid for the full elastic wave equation, for simplicity we 
limit our mathematical descrintion in this section to the 

with 

P, (x, z, r) = 0, if r r 0. (1.2) 

[0031] The subscript i varies from 1 to I. The function a,(t) 
represents the source signature for the i-th shot. 

[0032] For multishooting, we must solve the following 
equation: 

with 

P(x, z, r) = 0 and a,([) = 0, if r r 0, (1.4) 

where all the I shots are generated simultaneously [or almost 
simultaneously if there is a slight delay between the a,(t)] 
and recorded in a single shot gather. We will call the 
wavefield P(x,z,t) the multishot data. 

[0033] One of the key tasks in generating multishot data is 
the process of distinguishing the source signatures, a,(t). 
This process is known as source encoding. Source encoding 
can consist simply of slight variation in the initial firing time 
of the sources involved in the multishooting experiment. 
Such variations must take into account the record length of 
the data, the distance between two multishots, and for 
marine data, the boat ship speed (-3 nds). 

[0034] Let us look at an example of a multishot gather 
made up of four shot gathers for the case in which the source 
signatures a,(t) are selected as follows: 

where g(t) is the source signature in FIG. 1 and -c, is the time 
at which shot i is fired. In other words, the source signatures 
are identical for all four shots, but they have different initial 
firing times (i.e., -cl=O, -c2=100 ms, -c3=200 ms, -c4=300 ms). 
The firing-time delays have been made quite large in this 
example to facilitate the analysis of the first example of 
multishot data for this invention The four shot points are 
(x1=2250 m, zl=10 m), (x2=2500 m, z2=10 m), (x3=2750 m, 
z3=10 m), and (x4=3000 m, z4=10 m). FIG. 2 shows the 
snapshots of the wave propagation of a time-coded multishot 
wavefield. At t=250 ms, all the waves created by each of the 

acoustic wave equation of 2D media with constant density, four shots are clearly distinguishable. However, for later 

[00301 L~~ (x,z) denote a point in the medium with a times, such as t=1000 ms, it is more difficult to distinguish 

velocity c(x,z), (x,,z,) denote a source position, P,(x,z,t) waves associated with each of the four shots because mul- 

denote the pressure variation at point (x,z), and time t for a tiple reflections and diffractions have significantly distorted 
source at (x,,z,). The problem of simulating a seismic survey the wavefronts. Similar observations can be made for mul- 
of I shot gathers corresponds to solving the differential tishot gathers in FIG. 3. Early-arrival events, such as direct 
equation waves associated with the four shots, are clearly distinguish- 
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able and can easily be decoded. It is more difficult, at least 
visually, to establish the association of late-arrival events 
with particular shot points. 

2.2 The Principle of Superposition in Multishooting 

[0035] As illustrated in FIGS. 2 and 3, the concept of 
multishooting is based on the principle of superposition; i.e., 
multishot gather P(x,z,t) is related to single-shot gathers 
P,(x,z,t), as follows (1 .I): 

[0036] This principle states that in a linear system, the 
response to a number of signal inputs, applied nearly simul- 
taneously, is the same as the sum of the responses to the 
signals applied separately (one at a time). In the context of 
multishooting, the input signals are source signatures (the 
source signatures need not be identical; for instance, their 
initial firing times can be different, as shown in FIG. 3). The 
linear system satisfies the linear stress-strain relation and the 
equations of motion from which we derive wave equations 
such as the ones in (1.1) and (1.3). The pressure response, 
P(x,z,t), can be either snapshots (at t=constant) or seismic 
data (at z=constant) representing stress, particle velocity, 
particle acceleration, etc. So the only time the superposition 
principle does not apply to our multishooting concept occurs 
when a system is nonlinear-for example, when the stress- 
strain relation is nonlinear, as the equilibrium equation is 
valid for any medium, linear or nonlinear. Fortunately, the 
linear stress-strain relation is good enough for modeling 
most phenomena encountered in seismic data because in 
petroleum seismology we are primarily dealing with small 
deformations (in both stresses and strains). 
[0037] The only phenomenon of importance in seismic 
exploration and production that may be properly modeled by 
a linear stress-strain relation is the deformation near the shot 
point during the formation of the initial shot pulse because 
the deformation in the vicinity of the shot point can be 
relatively large. But this phenomenon does not appear to be 
of great consequence over most of the travelpath, thus 
permitting us to use the superposition principle in most 
cases. 

3 THE REWARDS OF MULTISHOOTING 

[0038] The potential savings in time and money associated 
with multishooting are enormous, because the cost of simu- 
lating or acquiring numerous shots simultaneously is almost 
identical to the cost of simulating and acquiring one shot. 
Let us elaborate on these potential savings for (1) seismic 
acquisition, (2) numerical simulation of seismic surveys, and 
(3) data storage. 

3.1 Seismic Acquisition 

[0039] It is obvious that multishooting can reduce the cost 
of and the time required for the present acquisition proce- 
dure severalfold. However, it can also be used to improve the 
ways in which we acquire data. For instance, it can be used 
to improve the spacing between shot points, especially the 
azimuthal distribution of shot points, and therefore to collect 
true 3D data (i.e., the full-azimuth survey). In fact, current 

3-D acquisitions-say, marine, with a shooting boat sailing 
along in one direction and shooting only in that direction-do 
not allow enough spacing between shot points for a full 
azimuthal coverage of the sea surface or land surface. 
[0040] The multishooting concept can also be used to 
improve inline coverage in marine acquisitions. A typical 
shooting boat tows two sources that are fired alternatively 
every 25 m (i.e., individually every 50 m), allowing us to 
record data more quickly than when only one source is used. 
As we mention earlier, this shooting technique is known as 
flip-flop. The drawback of flip-flop shooting is that the 
spacing between shots is 50 m, but most modem seismic 
data-processing tools, which are based on the wave equa- 
tion, require a spacing on the order of 12.5 m or less. By 
replacing each source with an array of four sources sepa- 
rated by 12.5 m, we can produce a dataset with a source 
spacing of 12.5 m. We can actually replace each source with 
an array of several sources (more than four). Such an array 
leads to a multishooting survey. So instead of the shooting 
boat towing two sources, it will tow several sources, just as 
it is presently towing several streamers. The present tech- 
nology for synchronizing the shooting time and orienting 
vessels and streamer positions can be used to deploy and fire 
these sources at the desired space and time intervals. 

3.2 Simulation of Seismic Surveys 

[0041] Simulating seismic surveys corresponds to solving 
the differential equations which control the wave propaga- 
tion in the earth under a set of initial, final, and boundary 
conditions. The most successful numerical techniques for 
solving these differential equations include (i) finite-differ- 
ence modeling (FDM) based on numerical approximations 
of derivatives, (ii) ray-tracing methods, (iii) reflectivity 
methods, and (iv) scattering methods based on the Bom or 
Kirchhoff approximations. These techniques differ in their 
regime of validity, their cost, and their usefulness in the 
development of interpretation tools such as inversion. When 
an adequate discretization in space and time, which permits 
an accurate computation of derivatives of the wave equation, 
is possible, the finite-difference modeling technique is the 
most accurate tool for numerically simulating elastic wave 
propagation through geologically complex models (e.g., 
Ikelle et al., 1993). 
[0042] Recently, more and more engineers and interpreters 
in the industry and even in field operations are using the 
two-dimensional version of FDM to simulate and design 
seismic surveys, test imaging methods, and validate geo- 
logical models. Their interest is motivated by the ability of 
FDM to accurately model wave propagation through geo- 
logically complex areas. Moreover, it is often very easy to 
use. However, for FDM to become fully reliable for oil and 
gas exploration and production, we must develop cost- 
effective 3D versions. 
100431 3D-FDM has been a long-standing challenge for - - - 
seismologists, in particular for petroleum seismologists, 
because their needs are not limited to one simulation but 
apply to many thousands of simulations. Each simulation 
corresponds to a shot gather. To focus our thoughts on the 
difficulties of the problem, let us consider the simulations of 
elastic wave propagation through a complex geological 
model discretized into 1000x1000x500 cells (Ax=Ay=Az=5 
m). The waveforms are received for 4,000 timesteps (At=l 
ms). We have estimated that it will take more than 12 years 
of computation time using an SGI Origin 2000, with 20 
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CPUs, to produce a 3D survey of 50,000 shots. For this 
reason, most 3D-FDM has been limited to borehole studies 
(at the vicinity of the well), in which the grid size is about 
100 times smaller than that of surface seismic surveys 
(Cheng et al., 1995). One alternative to 3D-FDM generally 
put forward by seismologists is the hybrid method, in which 
two modeling techniques (e.g., the ray-tracing and finite- 
difference methods) are coupled to improve the modeling 
accuracy or to reduce the computation time. For complex 
geological models containing significant lateral variations, 
this type of coupling is very dificult to perform or operate. 
Moreover, the connectivity of the wavefield from one mod- 
eling technique to another sometimes produces significant 
amplitude errors and even phase distortion in data obtained 
by hybrid methods. We describe here a computational 
method of FDM which significantly reduces the cost of 
producing seismic surveys, in particular 3D seismic surveys. 
Instead of performing FDM sequentially, one shot after 
another, as is currently practiced, we will compute several 
shots simultaneously, then decode them if necessary. The 
cost of computing several shots simultaneously is identical 
to the cost of computing one shot. As we will see later, the 
fundamental problem is how to decode the various shot 
gathers if we are using a processing package which requires 
the shot gathers to be separated, or how to directly process 
multishot data. 

3.3 Seismic Data Storage 

[0044] The cost of storing seismic data is almost as 
important as that of acquiring and processing seismic data. 
Today a typical 3D seismic survey amounts to about 100 
Tbytes of data. On average, about 200 such surveys are 
acquired every month. And all these data must not only be 
processed, but they are also digitally stored for several years, 
thus making the seismic industry one of the biggest con- 
sumers of digital storage devices. The concept of multi- 
shooting allows us to reduce the reauirements of seismic- - 
data storage by severalfold. For instance, in the case of a 
multishooting acquisition in which eight shot gathers are 
acquired simultaneously, we can reduce the data storage 
from 100 Tbytes to 12.5 Tbytes. 

4 THE CHALLENGES OF MULTISHOOTING 

[0045] Several hurdles must be overcome before the oil 
and gas industry can enjoy the benefits of multishooting in 
the drive to find cost-effective E&P (exploration and pro- 
duction) solutions. Fundamental among these hurdles are the 
following: 

[0046] how to collect multishot data 
[0047] how to simulate multishot data on the computer 
[0048] how to decode multishot data 

[0049] Addressing these issues basically involves devel- 
oping methods for decoding multishot data. These develop- 
ments will in turn dictate how to collect and simulate 
multishot data or, in other words, how sources must be 
encoded [e.g., how to select parameters a,(t) and T,]. 

4.1 Decoding of Multishot Data 

[0050] Let us now turn to the decoding problem. To 
understand the challenges of decoding seismic data, let us 
consider a multishooting acquisition with I source points 
{(xl,zl), (x2,z2), . . . , (xI,zI)}, which are associated with I 

source signatures al(t), a2(t), . . . , aAt). The multishot data 
at a particular receiver can be written as follows: 

where P(x,,t) are the multishot data and P,(x,,t) are the single 
shot gathers with the shot point at (x,,~,). H,(x,,t) is the 
earth's impulse response at the receiver location x, and the 
shot point at (x,,z,) for the case in which a,(t) is the source 
function. The star * denotes the time convolution. The 
seismic decoding problem is generally that of estimating 
either (1) the single-shot data P,(x,,t) or (2) the source 
signatures a,(t) and the impulse responses H,(x,,t), as in most 
situations the source signatures are not accurately known. 
[0051] Even if the source signatures are available for each 
timestep, we still have to solve for I unknowns [H,(x,,t)] 
from one equation for each timestep. So one of the key 
challenges of seismic decoding is to construct additional 
equations to (1.7) without performing new multishot experi- 
ments. In other words, we have to go from (1.7) to either 

where the subscript k varies from 1 to K, with K=I. Each k 
corresponds to the construction of a multishooting experi- 
ment from (1.7), with Q,(x,,t) being the resulting multishot 
data. We will characterize the multishooting experiments 
corresponding to data Ql(x,,t), Q2(x,,t), . . . , W X , , ~ )  as 
multisweeplmultishot data, where the subscript k describes 
the various sweeps and the subscript i in equations (1.8) and 
(1.9) describes single-shot gathers which have been com- 
bined to form the multishot data. In short, we will call the 
multisweeplmultishot data MWIMX, where MW stands for 
multisweep and MX for multishot. We have selected the 
nomenclature MWIMX to avoid any confusion with the 
MSIMS nomenclature. which is known in the seismic com- 
munity as the multisourcelmultistreamer. So in (1.8), the 
MWIMX data are obtained as instantaneous mixtures of the 
single-shot data, whereas in (1.9) they are obtained as 
convolutive mixtures of the single-shot data. 
[0052] With this notation, the problem of going from 
(1.82) to, say, (1.9) corresponds to constructing MWIMX 
data from single-sweeplmultishot data, which we will 
denote (SWIMX). Later on, we describe several ways of 
constructing MWIMX data from SWIMX data by mainly 
using (1) source encoding, (2) acquisition geometries, and 
(3) the sparsity of seismic data. 
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[0053] In this invention, we address the general decoding 
problem in which the starting points are K sweep data with 
KSI.  When KeI, we use source encoding, acquisition geom- 
etries, and classic processing tools to construct the addi- 
tional I-K equations. The case in which K=l (SWIMX) is 
just one particular case. 
[0054] Very often, the matrices in equations (1 .8) and (1.9) 
are unknown. We will denote the matrix in (1.9) r and the 
matrix in (1 .8) A, We call them mixing matrices. Earlier, we 
described ways of solving the system in (1.9)-that is, of 
simultaneously estimating the mixing matrix r (or its 
inverse), and the single-shot gathers, P,(x,,t). Later on we 
describe solutions of the system in (1.8)-that is, the simul- 
taneous estimation of the mixing matrix A (or its inverse) 
and the impulse responses H,(x,,t). 
[0055] To summarize the key steps of the coding and 
decoding processes that we have just defined, we have 
schematized them in FIG. 4. Note that the coding process- 
that is, the process of generating andor constructing 
MWIMX data-is considered synonymous with the coding 
process in this figure and in the rest of the invention. 
Similarly, the decoding process-that is, the process of 
constructing single-shot data from MWIMX data-and the 
demixing processes are used synonymously in this figure 
and in the rest of the invention. 

5 BACKGROUND 

[0056] (1.) Related to US patent, U.S. Pat. No. 6,327,537 
B1 
[0057] (2.) Basseley et al. (U.S. Pat. No. 5,924,049) pro- 
pose a method for acquiring and processing seismic survey 
data from two or more sources activated simultaneously or 
near simultaneously. Their method (i) requires two or more 
vessels, (ii) is limited to a 1D model of the surface (although 
not explicitly stated), (iii) does not utilize ICA or PCA, and 
(iv) is limited to instantaneous mixtures. 
[0058] (3.) Salla et al. (U.S. Pat. No. 6,381,544 B1) 
propose a method designed for vibroseis acquisition only. 
Their method (i) does not utilize ICA or PCA, (ii) is limited 
to instantaneous mixtures, and (iii) assumes that the mixing 
matrices are instantaneous and known. 
[0059] (4.) Douma (U.S. Pat. No. 6,483,774 B2) presents 
an invention for acquiring marine data using a seismic 
acquisition system in which shot points are determined and 
shot records are recorded. The method differs from ours in 
that (i) it is not a multishooting acquisition as defined here, 
and (ii) it does not utilize ICA or PCA. 
[0060] (5.) Sitton (U.S. Pat. No. 6,522,974 B2) describes 
a process for analyzing, decomposing, synthesizing, and 
extracting seismic signal components such as the fundamen- 
tals of a pilot sweep or its harmonics, from seismic data uses 
a set of basis functions. This method (i) is not a multishoot- 
ing acquisition as defined here, (ii) it does not utilize ICA or 
PCA, and (iii) it is for vibroseis acquisition only. 
[0061] (6.) de Kok (U.S. Pat. No. 6,545,944 B2) describes 
a method of seismic surveying and seismic data processing 
using a plurality of simultaneously recorded seismic-energy 
sources. This method focuses more on a specific design of 
multishooting acquisition and not on decoding. It does not 
consider convolutive mixtures, it does not utilize ICA or 
PCA, and it assumes that the mixing matrices are known. 
[0062] (7.) Moerig et al. (U.S. Pat. No. 6,687,619 B2) 
describe a method of seismic surveying using one or more 
vibrational seismic energy sources activated by sweep sig- 

nals. Their method (i) does not utilize ICA or PCA, (ii) it is 
limited to instantaneous mixtures with the Walsh tvve of 

2. 

code, (iii) is limited to vibroseis acquisition only, and (iv) it 
assumes that the mixing matrices are known. 
[0063] (8.) Becquey (U.S. Pat. No. 6,807,508 B2) 
describes a seismic prospecting method and device for 
simultaneous emission, by vibroseis, of seismic signals 
obtained by phase modulating a periodic signal. This method 
(i) does not utilize ICA or PCA, (ii) is limited to instanta- 
neous mixtures with the Walsh type of code, (iii) is limited 
to vibroseis acquisition only, and (iv) assumes that the 
mixing matrices are known. 
[0064] (9.) Moerig et al. (U.S. Pat. No. 6,891,776 B2) 
describe methods of shaping vibroseis sweeps. This method 
(i) is not a multishooting acquisition as defined here, (ii) 
does not utilize ICA or PCA. and (iii) is for vibroseis , , 
acquisition only. 
[0065] (10.) Most seismic coding and decoding methods 
as focused so far on vibroseis sources using some forms of 
Walsh-Hadamard codes. The Walsh-Hadamard code of 
length I=2" is a set of perfectly orthogonal sequences that 
can be defined and generated by the rows of the 2"x2" 
Hadamard matrix (Yarlagadda and Hershey, 1997). Starting 
with a 1x1 matrix, r ,=[l]  (i.e., m=O), higher-order Had- 
amard matrices can be generated by the following recursion: 

[0066] For example, r, can be recursively generated as 

for I = 2 (i.e., m = 1), 

for I = 4 (i.e., m = 2) 

for I=8 (i.e., m=4). All the row and column sequences of the 
Hadamard matrices are Walsh sequences if the order is I=2". 
[0067] So the decoding of multishot data is facilitated by 
coding the polarities of source energy with the Walsh- 
Hadamard decoding. Let us consider the case in which two 
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sources are twice simultaneously operated [i.e., I=2] to send 
waves into the subsurface. In the second sweep, each of the 
two sources sends energy identical to that in the first sweep, 
except that the polarity of the second source is opposite that 
of the first sweep. By substitution, we obtain those decoded 
data: 

[0068] Martinez et al. (1987), Womack et al. (1988), and 
Ward et al. (1990) arrive at the same result by assuming that 
the first source is 180 degrees out of phase relative to the first 
sweep. 
[0069] Similarly, we can decode multishot data composed 
of four sources which are simultaneouslv overated four 

2 .  

times [i.e., I=4] to send four sweeps of vibrations into the 
subsurface. In the second, third, and fourth sweeps, each of 
the four sources sends energy identical to that in the first 
sweep, except that some polarities are different from those 
in the first sweep. The first row of the polarity matrix in 
(1.12) corresponds to the polarities of the four sources for 
the first sweep, the second row corresponds to the polarities 
of the four sources for the second sweep, and so on. By using 
(1.12), we obtain the following decoded data: 

[0070] The methods, which are based on the Walsh- 
Hadamard codes, are by definition limited to vibroseis 
sources through which such codes can be programmed. 
Moreover, the mixture matrices are assumed to be known, 
and the mixtures are assumed to be instantaneous. 

6 ALGORITHMS FOR INSTANTANEOUS 
MIXTURES 

[0071] The relationship between multishot data and 
decoded data at receiver x, and time t can be written as 
follows: 

where Yk(x,,t) are the multishot data corresponding to the 
kth sweep and X,(x,,t) correspond to the ith shot point if the 
acquisition was performed conventionally, one shot after 
another. r={y,) is an 1x1 matrix (known as a mixing matrix) 
that we assume to be time- and receiver-independent. We 

will discuss this assumption and the content of this matrix in 
more detail later on. Again, the goal of the decoding process 
is to recover X,(x,,t) from Yk(x,,t), assuming that r is 
unknown. 
[0072] As described in equation (1.20), the coding of 
multishot data [i.e., the construction of Yk] is actually 
independent of time and receiver locations. In other words, 
the way the single-shot data are mixed to construct multishot 
data at a data point, say, (x,,t), is exactly the same at another 
data point, say, (xt,,t'). Therefore, as far as the coding and 
decoding of multishot data are concerned, each data point is 
only one possible outcome of seismic data-acquisition 
experiments. 
[0073] Note that we can also use random vectors to 
describe seismic data in the context of the equation in (1.20). 
Suppose that we have performed I multishoot shot gathers 
{Yk(x,,t), k=l, . . . , I) corresponding to I multishooting 
experiments. Statistically, we will describe the I multishot 
gathers as an I-dimensional random vector 

where T denotes the transpose. (Again, we use the transpose 
because all vectors in this invention are column vectors. 
Note also that vectors are denoted by boldface letters.) The 
components Y,, Y,, . . . , Y, of the column vector Y are 
continuous random variables. Similarly, we can define a 
random vector 

X = F 1 , X 2 , .  . . > x I I T  (1.22) 

so that (1.20) can be written as follows: 

6.1 Whitening 

[0074] The decoding of seismic data will consist of going 
either from (i) dependent and correlated mixtures if the 
mixing matrix is nonorthogonal or from (ii) dependent and 
correlated mixtures if the mixing matrix is orthogonal to 
independent single-shot gathers. To facilitate the derivations 
of the decoding methods, we here describe a preprocessing 
of mixtures that allows us to turn the decoding process into 
a single problem of decoding data from mixtures that are not 
dependent but are uncorrelated. In other words, if the mixing 
matrix is not orthogonal, as is true in most realistic cases, we 
have to uncorrelate the mixtures before decoding. This 
process of uncorrelating mixtures is known as whitening. 
[0075] So our objective in the whitening process is to go 
from multisweep-multishot gathers describing mixtures 
which are correlated and dependent to new multisweep- 
multishot gathers which correspond to mixtures that are 
uncorrelated but remain statistically dependent. Mathemati- 
cally, we can describe this process as finding a whitening 
matrix V that allows us to transform the random vector Y 
(representing multisweep-multishot data) to another random 
vector, Z=[Z,, Z,, . . . , z,lT, corresponding to whitened 
multisweep-multishot data; i.e., 

[0076] Again, V={v,,) is an 1x1 matrix that we assume to 
be time- and receiver-independent. Based on the whitening 
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condition, the whitening problem comes down to finding a 
V for which the covariance matrix of Z is the identity matrix; 

[0077] That is, the random variables of Z have a unit 
variance in addition to being mutually uncorrelated. Using 
(1.24), we can express the covariance of Z as a function of 
V and of the covariance of Y 

[0078] In general situations, the I sweeps of multishot data 
are mutually correlated; i.e., the covariance matrix ~ , ( 2 )  is 
not diagonal. However, ~ , ( 2 )  is always symmetric and 
positively definite. Therefore it can be decomposed using the 
eigenvalue decomposition (EVD), as follows: 

where E, is an orthogonal matrix and L, is a diagonal matrix 
with all nonnegative eigenvalues A,; that is, L,=Diag(A,, A,, 
. . . , A,). The columns of the matrix E, are the eigenvectors 
corresponding to the appropriate eigenvalues. Thus, assum- 
ing that the covariance matrix is positively definite, the 
matrix V. which allows us to whiten the random vector Z. 
can be computed as follows: 

[0079] Note that if we express the covariance of Y as 

and substitute (1.29) into (1.26), we arrive at the classical 
alternative way of expressing V; that is, v=[c,(~)]-~/~. 
[0080] The whitened multisweep-multishot gathers are 
then obtained as 

[0081] So the random vector Z is said to be white, and it 
preserves this property under orthogonal transformations. 
The decoding process in the next section will allow us to go 
from Z to single-shot data X. Notice that the product of any 
nonzero diagonal matrix with V is the solution of the general 
case in which the covariance of Z is required only to be 
diagonal, as defined in (1.26). Such a product allows us to 
solve the PCA problem. 
[0082] The algorithmic steps of the whitening process are 
as follows: 
(1) compute the covariance matrix of Y [i.e., c,(~)Y], 
(2) apply the EVD of ~ , ( 2 ) ,  
(3) compute V as described in (1.28), and 
(4) obtain the whitened data Z using (1.30). 
[0083] Let us look at some illustrations of the whitening 
process. FIG. 5 shows scatterplots of the results of whitening 
matrices of the multisweep-multishot data constructed by 
using a nonorthogonal matrix. We can see that the dominant 
axes of the whitened data are orthogonal; therefore the data 
Z, and Z, are uncorrelated. However, they are not indepen- 
dent, because these axes do not coincide with the vertical 
and horizontal axes of the 2D plot. 
[0084] In summary, given the multisweep-multishot data 
Y, the whitening process aims at finding an orthogonal 
matrix, V, which gives us a new uncorrelated multisweep- 
multishot data, Z. It considers only the second-order statis- 
tical characteristics of the data. In other words, the whiten- 
ing process uses only the joint Gaussian distribution to fit the 
data and finds an orthogonal transformation which makes 

the joint Gaussian distribution factorable, regardless of the 
true distribution of the data. In the next section, we describe 
some ICAdecoding methods whose goals are to seek a linear 
transformation which makes the true joint distribution of the 
transformed data factorable, such that the outputs are mutu- 
ally independent. 

6.2 Algorithm #1 

[0085] Our objective now is to decode whitened multi- 
sweep-multishot data; that is, we will go from whitened 
multisweep-multishot data to single-shot data. The math- 
ematical expression of decoding is 

where Z, are the random variables describing the whitened 
multisweep-multishot data corresponding to the kth sweep 
and X, are the random variables corresponding to the ith 
source point if the acquisition was performed convention- 
ally, one source location after another. The matrix W={w,,) 
is an 1x1 matrix that we assume to be time- and receiver- 
independent. 
[0086] Note that if the set of random variables [X,, . . . , 
XI] forms a set of mutually independent random variables, 
then any permutation of [a,X,, . . . , aIII], where a, are 
constants, also forms a set of mutually independent random 
variables. In other words, we can shuffle random variables 
andor rescale them in any way we like; they will remain 
mutually independent. Therefore the decoding process based 
on the statistical-independence criterion will reconstruct a 
scaled version of the original single-shot data, and not 
necessarily in a desirable order. However, the decoded shot 
gathers can easily be reorganized and resealed properly after 
the decoding process by using first arrivals or direct-wave 
arrivals. As we can see in FIG. 6, the first arrivals indicate 
the relative locations of sources with respect to the receiver 
positions. The direct wave, which is generally well separated 
from the rest of the data, can be used to estimate the relative 
scale between shot gathers. Therefore, the first arrivals and 
direct waves of the decoded data can be used to order and 
scale the decoded single-shot gathers. 
[0087] Let us start by recalling the multilinearity property 
of fourth-order cumulants between two linearly related 
random vectors-that is, 

where (1.32) is based on the coding relationship between Z 
and X in (??) and (1.33) is based-on the decoding relation- 
ship between Z and X in (1.3 1). yp, are the elements of the 
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coding matrix f ,  and w, are the elements of the decoding 
matrix W. As the components of X are assumed to be 
independent, only the autocumulants in ~ , ( 4 )  (i.e., Cum[X,, 
X,, X,, X,]) can be nonzero. 
[0088] We can determine W by finding the orthonormal 
(or orthogonal) matrix which minimizes the sum of all the 
squared crosscumulants in ~ , (4 ) .  Because the sum of the 
squared crosscumulants plus the sum of the squared autocu- 
mulants does not depend on W as long as W is kept 
orthonormal, this criterion is equivalent to maximizing 

[0089] The function Y,,,(W) is indeed a contrast function. 
Its maxima are invariant to the permutation and scaling of 
the random variables of X or Z. This property results from 
the supersymmetry of the cumulant tensors and the property 
in (??). The subscript 4 of Y,,,(W) indicates that we are 
diagonalizing a tensor of rank four, and the subscript 2 
indicates that we are taking the squared autocumulants. For 
the general case, the contrast function denoted Y,,, corre- 
sponds to the diagonalization of a cumulant tensor of rank r 
using the sum of the autocumulants at power v; i.e., 

I (1.35) 

Y.. = C c U m [ x , .  ii. . . X , I I ~ ,  
r rimes 

with v21$  and r>2. Experience suggests that no significant 
advantage is gained by considering the cases in which v+2; 
that is why our derivation is limited to v=2. Moreover, an 
analytic solution for W is sometimes possible when v=2. 

[0090] To further analyze the contrast function Y,,,(W), 
let us consider the particular case in which I=2. The decod- 
ing matrix for this case can be expressed as follows: 

[0091] One can alternatively use WT, which is also an 
orthonormal matrix, by replacing 0 by -0 in (1.36). We can 
determine W by sweeping through all the angles from - d 2  
to x12; we then arrive at 0,,,, for which $\Upsilon_{2, 
4)0theta)$ is maximum. The decoding process comes down 
to (1) estimating 0,, (2) constructing the decoding matrix W 
in (1.36) for 0=-0,14, and (3) deducing the decoded data as 
X=WZ. The scatterplots in FIG. 5 of decoded seismic data 
show that we have effectively recovered the single-shot data 
in all these cases. The seismic whitened data and decoded 
data in FIGS. 7 and 8 also show that this decoding process 
allows us to recover the original single-shot data. 
[0092] For 122, we propose the following algorithm: 

[0093] (1) Collect multisweep-multishot data in at least 
two mixtures using two shooting boats, for example, or any 
other acquisition devices. 
[0094] (2) Arrange the entire multishot gather (or any 
other gather type) in random variables Y,, with i varying 
from 1 to I. 
[0095] (3) Whiten the data Y to produce Z. 
[0096] (4) Initialize auxiliary variables W'=I and Zt=Z. 
[0097] (5) Choose a pair of components i and j (randomly 
or in any given order). 
[0098] (6) Compute €I4(") using the cumulants of Z' and 
deduce 0,,("). 
[0099] (7) 1f B,,,(")>E, construct w(") and update W'+W 
(v)wt, 

[0100] (8) Rotate the vector Z': z'+w(")z'. 
[0101] (9) Go to step (5) unless all possible 0,,,(")5~, 
with E C C ~ .  
[0102] (10) Reorganize and rescale properly after the 
decoding process by using first arrivals or direct-wave 
arrivals. 
[0103] The symbol + means substitution. In the fifth step, 
for example, the matrix on the right-hand side is computed 
and then substituted in W'. This notation is a very convenient 
way to describe iterative algorithms, and it also conforms 
with programming languages. We will use this convention 
throughout the invention. 
[0104] This algorithm is based on the fact that any I-di- 
mensional rotation matrix W can be written as the product 
of I(1-1)12 two-dimensional-plane rotation matrices of size 
1x1. 
[0105] Let us illustrate this decoding algorithm for the 
case in which I=4. We have generated four single-shot 
gathers with 125-m spacing between two consecutive shot 
points. We then mixed these four shot gathers using the 
following matrix: 

[0106] FIG. 9 shows the mixed data. We have then used 
the algorithm that we have just described to decode these 
mixed data. The results in FIG. 10 show that this algorithm 
is quite effective in decoding the mixed data. 

6.3 Algorithm #2 

[0107] Here is an alternative implementation: 
[0108] (1) Collect multisweep-multishot data in at least 
two mixtures using two shooting boats, for example, or any 
other acquisition devices. 
[0109] (2) Arrange the entire multishot gather (or any 
other gather type) in random variables Y,, with i varying 
from 1 to I. 
[0110] (3) Whiten the data Y to produce Z 
[Olll] (4) Compute the cumulant matrices Q @ , ~ )  of the 
whitened data vector Z. 
[0112] (5) Initialize the auxiliary variables Wt=I. 
[0113] (6) Choose a pair of components i and j (randomly 
or in any given order). 
[0114] (7) Compute €I4(") using Q @ , ~ )  and deduce 
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[0131] Here is the one-unit algorithm needed in algorithms 
#3. 
[0132] (1) Choose an initial (e.g., random) vector w and an 
initial value of a. 
[0133] (2) Update w + E ~ z ~ ( w , ~ z ) ] - E ~ ~ ' ( w ~ ~ z ) ] w ~ .  
[0134] (3) Normalize w+w/l~wl~. 
[0135] (4) If not converged, go back to step 2. 

6.5 Algorithm #4 

[013 61 Suppose that the multisweep-multishot data have 

construct w(") and update w'+w(")w'. been whitened and that there is a region of the data in which 
only one of the single-shot gathers contributes the multi- 

[0116] (9) Diagonalize the cumulant matrices: Q@,~)+w 
('J)Q@,Y)[w('J)] T, sweep-multishot gathers. In that region, the coding equation 

reduces to 
[0117] (10) Go to step (5) unless all possible 

with ~ < < 1  
[0118] (11) Reorganize and rescale properly after the 
decoding process by using first arrivals or direct-wave 
arrivals. 
[0119] Notice that this algorithm is very similar to the 
algorithm described in the previous subsection. The only 
difference between the two algorithms, yet an important one, 
is that we here do not compute the cumulant tensor from the 
whitened data Z at each step. When the random variables of 
Z have large number samples, significant computational 
efficiency can be gained by using algorithm #1 instead of 
algorithm #2. Notice also that one can here use the EVD of 
one the cumulant matrices, say, Q(l,l),  as a starting point of 
the decoding matrix instead of W=I. 

6.4 Algorithm #3 

[0120] We have also developed alternative implementa- 
tions using the statistical concept of negentropy and the fact 
that seismic data are very sparse. 
[0121] (1) Collect multisweep-multishot data in at least 
two mixtures using two shooting boats, for example, or any 
other acquisition devices. 
[0122] (2) Arrange the entire multishot gather (or any 
other gather type) in random variables Y,, with i varying 
from 1 to I. 
[0123] (3) Whiten the data Y to produce Z. 
[0124] (4) Choose I, the number of independent compo- 
nents, to estimate and set p=l. 
[0125] (5) Initialize wp (e.g., a random-unit vector). 
[0126] (6) Do an iteration of a one-unit algorithm on wp. 
[0127] (7) Do the following orthogonalization: 

where (tA,xA) is one of the data points in that region. By 
using the fact that the decoding matrix for whitened data is 
orthogonal, like the one in (1.36), equation (1.39) can also 
be written as follows: 

[0137] We can then obtain the specific value Om,, 

which is needed to compute the decoding matrix, W. 
[0138] This idea can actually be generalized to recover 
both r ,  which can be inverted to obtain WV, thus avoiding 
the whitening process. Instead of trying to recover the 
following coding, 

we will try the recover the matrix r ' ,  which we define as 
follows: 

P-1 

W, = W, - c (W;W,)W,. 
[0139] As the results of our decoding process are invariant 

J=I with respect to the scale and permutations of the random 
variables, determining r or r '  has no effect on the results. So 
we decided to estimate r ' .  Notice that determining r '  comes 

[01281 (8) Normalize wp by dividing it by its norm (e.g. down to determining only the diagonal of rt(i.e., yll/y12 and 
wp+w/llwll). ~22/~21). 
[0129] (9) If wp has not converged, go back to step 6. [0140] (1) Collect multisweep-multishot data in at least 
[0130] (10) Set p=p+l. If p is not greater than I, go back two mixtures using two shooting boats, for example, or any 
to step 5. other acquisition devices 
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[0141] (2) Arrange the entire multishot gather (or any 
other gather type) in random variables Y,, with i varying 
from 1 to I. 
[0142] (3) set the counter to kkl .  
[0143] (4) Select a region of the data in which only 
single-shot X, contribute to the data. 
[0144] (5) Compute the kth column of the mixing matrix 
using the ratios of mixtures. 
[0145] (6) Set k=k+l. If k is not greater than I, go back to 
step 4. 
[0146] (7) Invert the mixing matrix. 
[0147] (8) Estimate the single-shot gathers as the product 
of the inverse matrix with the mixtures. 

7 ALGORITHMS FOR CONVOLUTIVE 
MIXTURES 

desirable order and resealed properly by using first arrivals 
and direct-wave arrivals, as discussed earlier. However, 
when the decoding process involves several random vectors, 
as in the Fourier domain, where each frequency is associated 
with a random vector, an additional criterion is needed to 
align the frequency components of each decoded shot gather 
before performing the inverse Fourier transform. We will 
use the fact that seismic data are continuous in time and 
space to solve for these indeterminacies. 

7.1 Convolutive Mixtures in the F-X Domain 

[0151] Fourier-transform techniques are useful in dealing 
with convolutive mixtures because convolutions become 
products of Fourier transforms in the frequency domain. 
Thus we can apply the Fourier transform to both sides of 
Equation (1.43), to arrive a 

[0148] In the convolutive-mixture cases the coding of 
multisweep-multishot data can be expressed as follows: 

I 

Pk (x,,  W )  = z Ak, (w)H, (x,,  W )  

(1.43) 
,=I 

or alternatively at 

I (1.45) 
H, (x,, w )  = z B,k (w)Pk (x,,  w ) ,  

where the star * denotes time convolution and where the k = ~  

subscript k, which describes the various sweeps, varies from 
to I just like the subscript does. So the multisweep- where the functions B,,(o) represent the frequency response 

multishooting acquisition here consists of I shot points and of the demixing system such that 
I sweeps, with P,(x,,t) representing the k-th multishooting 
experiment; {P,(x,,t), P,(x,,t), . . . , PAx,,t)) representing the 
multisweep-multishot data; A,(t) representing the source (1.46) 
signature at the i-th shot point during the k-th sweep; and i A . k ( w ) B k J ( w )  = 4. 
H,(x,,t) representing the bandlimited impulse responses of k = ~  

the i-th single-shot data. FIG. 11 illustrates the construction 
of convolutive mixtures. Our objective in this section is to 
develop methods for recovering H,(x,,t) and A,(t) from the 
multisweep-multishot data. 
[0149] Our approach to the problem of decoding convo- 
lutive mixtures of seismic data is to reorganize (1.43) into a 
problem of decoding instantaneous mixtures. For example, 
by Fourier-transforming both sides of (1.43) with respect to 
time, the convolutive mixtures of seismic data can be 
expressed as a series of complex-valued instantaneous mix- 
tures. In other words we can treat each frequency as a set of 
separate instantaneous mixtures which can be decoded by 
adapting the ICA-based decoding methods described earlier 
so that these methods can work with comnlex values. We 
will discuss these adaptations in this section. 
[0150] In addition to reformulating the ICA-based decod- 
ing methods so that they can work with complex numbers, 
we will address the indeterminacies of these methods with 
respect to permutation and sign. As discussed earlier, the 
statistical-independence assumption on which the ICA 
decoding methods are based, is ubiquitous with respect the 
permutations and scales of the single-shot gathers forming 
the decoded-data vector. In other words, the first component 
of the decoded-data vector may actually be a,H,(x,,t) 
(where a, is a constant), for example, rather than H,(x,,t). 
When the multisweep-multishot data are treated in the 
decoding process as a single random vector, then the 
decoded shot gathers can easily be rearranged into the 

[0152] Notice that rather than using a new symbol to 
express this physical quantity after it has been Fourier- 
transformed, we have used the same symbol with different 
arguments, as the context unambiguously indicates the 
quantity currently under consideration. Again, this conven- 
tion is used throughout the invention unless specified oth- 
erwise. 
[0153] After the discretization of the frequency, (1.44) and 
(1.45) can be written as follows: 

where 



Nov. 29,2007 

and where Ao is the sampling interval in o .  The Greek index [0157] The v-frequency slice of whitened multisweep- 
v, which represents the frequency o=(v-l)Ao, varies from multishot data is then obtained as 
1 to N, N being the maximal number of frequencies. Because 
the mixing elements are independent of receiver positions in Z,= V,,Y,. (1.58) - 
seismic acquisition, we treat Y,,,(x,) and X,,,(x,) as random 
variables, with the receiver positions representing samples 
of these random variables. So the gathers Y,,,(x,) and 
X,,,(x,) will now be represented as Y,,, and X ,,,, respec- 
tively; that is, we will drop the receiver variables. 
[0154] Notice that the number of receivers describes our 
statistical samples in this case. The obvious question that 
follows from this remark is: is the number of receivers is 
statistically large enough to treat Y,,, and X,,, as random 
variables? The answer is yes. The number of receivers for a 
typical streamer today is 800. For the typical case in which 
the acquisition consists of eight streamers, we will end with 
about 3600 receivers per shot gather, which is large enough 
to consider Y,,, and X,,, as statistically well sampled. 
[0155] Notice also that we can rewrite (1.47) and (1.48) as 
follows: 

where 

and where 4, and B, are the complex matrices for the 
frequency o=(v-l)Ao, whose coefficients are a,,, and fl,,,,, 
respectively. We can see that the convolutive mixtures in 
(1.53) now becomes a series of instantaneous mixtures. That 
is, for each v (i.e., for one frequency at a time), we can use 
the ICA-based decoding algorithms to recover X,. Therefore 
any of the algorithms described in the previous section can 
be used to decode as long as it is reformulated to work with 
complex-valued random variables, because Y, and X, are 
complex-valued vectors and 4, and B, are complex matri- 
ces. 

7.2 Whiteness of Complex-Valued Random Variables 

[0156] As described in the previous sections, ICA-based 
decoding algorithms require that data be whitened (orthog- 
anlized) before decoding them. The whitening process con- 
sists of transforming the original mixtures, say Y, (which is 
the v-frequency slice of the original data in the F-X domain), 
to a new mixture vector, Z, (which is the whitened v-fre- 
quency slice), such that its random variables are uncorre- 
lated and have unit variance. Mathematically, we can 
describe this process as finding a whitening matrix V, that 
allows us to transform the random data vector Y, to another 
random vector, Z,=[Z,,,, Z ,,,, . . . , Z,,JT, corresponding to 
the $\nu$-frequency slice of the whitened data; i.e., 

where V,={v,,,,} is an 1x1 complex-valued matrix. Based on 
the whitening condition and on the linearity property of 
covariance matrices, we can express the covariance of Z as 
a function of V and of the covariance of Y 

and deduce that 

[0158] So the random vector Z, is said to be white, and it 
preserves this property under unitary transformations. In 
other words, if W, is a unitary matrix and X, is a random 
vector which is related to Z, by the unitary matrix W,, then 
X,=W,Z, is also white. However, the joint cumulants of an 
order greater than 2, like the fourth-order statistics of X, can 
be different from those of Z,. Actually, the ICA decoding 
that we will describe in next exploit these differences to 
decode data. 

7.3 Statistical Independence Criteria with Constraints 

[0159] Our objective now is to decode whitened data- 
that is to find a unitary matrix W which allows us to go from 
whitened frequency slices Z, to frequency slices of single- 
shot data. The mathematical expression of decoding is 

where Z,, are the complex random variables describing the 
whitened frequency slices of multisweep-multishot data and 
X,,, are the complex random variables corresponding to the 
frequency slices of single-shot data. The complex matrix 
W,={w,,,,} is an 1x1 matrix that we assume to be receiver- 
independent. We have described solutions of a similar 
problem in the previous sections for real random variables 
based on the criteria that the random variables of X, are 
mutually independent. 

[0160] One of the key challenges in adapting these algo- 
rithms to complex random variables in general, and in 
particular in the frequency domain, is solving the problem 
independently for each frequency. In fact, if (W,, X,) is a 
solution of (1.59), then (W,AD, D~A-~x , )  is also a solution 
of (1.59), where D is an arbitrary permutation matrix and A 
is an arbitrary diagonal matrix. This indetermination is a 
direct consequence of the nonuniqueness of the statistical 
independence criteria with respect to permutation and scale. 
In other words, if the random variables {X,,,, . . . , X,,,} are 
mutually independent, then any permutations of {a,X,,,, . . 
. , alXvJ}, where a, are constants, are also mutually inde- 
pendent'random variables. These indeterminancies are eas- 
ily solve in the X-T domain because a single decoding 
matrix is estimated for all the data. In the frequency domain, 
permutation and even sign indeterminancies may vary 
between two frequencies, and yet we have the ordering of 
the decoded frequency slices, which must remain the same 
along the frequency axis in order to Fourier transform the 
data back to the time domain. That is why the indertermi- 
nancy problem is a challenge in this case. 

[0161] Let us denote by B, the demixing matrix; i.e., 
B,=W,V,, with X,=B,Y,. The scaling problem associated 
with ICA-decoding can be addressed by using the following 
scaling matrix 
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instead of B,. The expression ~ i a ~ ( ~ , - ' )  in this equation 
means the diagonal matrix are made of the diagonal ele- 
ments of B,~. The independent components obtained using 
B, are x,=B,Y,. As X, and k, differs by just the diagonal 
Diag(B,-l), they are both valid solutions to our decoding 
under the statistical-independent criterion. However, the 
good news is that B, is scaled independent because we can 
multiply B, by any arbitrary diagonal matrix D without 
changing B,. More precisely, we can verify that 

[0162] Therefore, by using B, instead of B, for the 
demixing matrix, we ensure that the scaling of our solution 
is consistent throughout the frequency spectrum. 
[0163] Let us now turn to the indeterminancy associated 
with the permutations of ICA-decoding solutions. One way 
of addressing this challenge is to introduce additional con- 
straints to the statistical-independence criteria. Possible con- 
straints can be proposed based on the fact that seismic data 
are continuous in space as well as in frequency. Therefore, 
the decoded data X, at frequency v can be compared to the 
decoded data X,,, at frequency v-1 . This comparison can be 
done by calculating the distance between any possible 
permutations of X, and X,-I . The permutation which yields 
the smallest distance is assumed to be the correct permuta- 
tion. Notice that, for an I dimension vector X,, there are I! 
permutations. Therefore this method becomes slow for large 
I. Alternatively, one can use the fact that the source signa- 
tures-that is, the components of B,-l are continuous to 
constraint the statistical-independence criteria. Again, the 
permutation which yields the smallest distance is assumed to 
be the correct permutation. 

7.4 Algorithm #5 

[0164] Our objective here is to describe one possible way 
of estimating the unitary ICA matrix W, for a given whit- 
ened frequency slice Z,. We will first illustrate our solution 
for the particular case of two mixtures (i.e., I=2) before 
describing it algorithmically for arbitrary value of I. 
[0165] When I=2, the ICA matrix can be expressed as 
follows: 

[0166] We can easily verify that this matrix is unitary. One 
can alternatively use wVH; i.e., 

which is also an unitary matrix. Our approach to determining 
W, is based on (i) the multilinear relationship between the 
fourth-order joint cumulants of Z, and on (ii) the assumption 
that the random variables of X, are statistically independent. 
The multilinear relationship between the fourth-order joint 
cumulants of Z, and those of X,, under the assumption that 
the random variables of X, are statistically independent, can 
be written as follows: 

where w, , ,~ are the elements of matrix wH. After substi- 
tution, we obtain the following system of six equations for 
four unknowns: 

where 0, 4, K~ and K ~ ,  are the unknowns. We have used the 
following abbreviated notations for the elements of the 
fourth-order cumulant tensors of Z, and X,: cVh=cum[z,, 
' ,Z~J'~,,k,~,,*I and K,=C~~[X,,,,X,,,,~,,~>X,,~I. 
[0167] So the complex ICA decoding process comes down 
to (1) estimating 0, and $,, (2) constructing the decoding 
matrices W, and B,, and (3) deducing the decoded data as 
X,=B,Z. After these computations have been performed for 
all the frequency slices of the data, a rearrangement of the 
frequency slices, using the fact that seismic data are con- 
tinuous or that the seismic source sirnatures are continuous u 

in the frequency domain, is needed. 
[0168] Here are the steps of our algorithm: 
[0169] (1) Collect multisweep-multishot data in at least 
two mixtures using two shooting boats, for example, or any 
other acquisition devices. 
[0170] (2) Take the Fourier transform of the data with 
respect to time. 
[0171] (3) Choose a frequency slice of data, Y,. 
[0172] (4) Whiten the frequency slice to produce Z, and 
T 1 " v. 
[0173] (5) Apply a complex ICA to Z, and produce W,. 
101741 (6) compute B,=W,V, and deduce 
B,=Diag(B,-l)B,. 
[0175] (7) Get the independent components for this fre- 
quency slice: X,=B,Y,. 
[0176] (8) Go to (2) unless all frequency slices have been 
processed. 
[0177] (9) Use the fact that seismic data are continuous in 
frequency to produce permutations of the random variables 
of X, which are consistent for all frequency slices. 
[0178] (10) Take the inverse Fourier-transform of the 
permuted frequency slices with respect to frequency. 

8 ALGORITHMS FOR UNDERDETERMINED 
MIXTURES 

[0179] In previous algorithms, we have assumed in our 
decoding process that the number of mixtures (i.e., K) equals 
the number of single-shot gathers (i.e., I); that is, K=I. In this 
section, we address the decoding process for the cases in 
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which the number of mixtures is smaller than the number of 
single-shot gathers; that is, KeI. 
[0180] One important characteristic of seismic data is that 
they are sparse. To reemphasize this point, we consider the 
two mixtures (i.e., K=2). Each mixture is a composite of four 
single-shot gathers (i.e., I=4). From the scatterplot of these 
two mixtures, we will see four directions of concentration of 
the data points. These data concentrations on particular 
directions indicate the sparsity of our data. Each of these 
directions corresponding to one of the four single-shot 
gathers is contained in the mixtures. Therefore if we can 
filter the data corresponding to two of these four directions 
of data concentrations, we will return to the classical for- 
mulation of decoding described with K=I that we now know 
how to solve. Alternatively, we can impose additional con- 
straints so that our decoding problem can become well- 
posed. These additional constraints can be based on the fact 
our data are sparse. The first part of this section describes 
decoding methods based essentially on the sparsity of seis- 
mic data. 
[0181] Suppose now that our seismic data are contami- 
nated by uniform distribution. It is no longer possible to take 
advantage of sparsity for our decoding. Fortunately, there is 
significant a priori knowledge about the seismic acquisition 
that we can use to construct additional synthetic mixtures 
from the recorded mixtures. The additional mixtures allow 
us again to turn from the underdetermined decoding problem 
to a well-posed problem that we can solve by using the 
independent component analysis (ICA) described in Chap- 
ters 2 and 3. We call these additional mixtures virtual 
mixtures because they are not directly recorded during 
seismic-acquisition experiments. 
[0182] More than 90 percent of seismic data acquired 
today are still based on towed-streamer-acquisition geom- 
etry. In this geometry, the boat carries the source and 
receivers, and it is obviously in constant motion. For this 
reason, we will often end up with single-mixture datasets, 
that is, with K=l and I as large as 8 or more. Again, we are 
fortunate that there is significant a priori knowledge about 
the acquisition that can be used to construct virtual mixtures 
from single mixtures, thus overcoming the mixture under- 
determinancy. 

8.1 Algorithm #6 

[0183] As we did in previous sections, we assume here 
that we have K multishot gathers described by a random 
vector Y=[Y,, Y,, . . . , y d T ,  where each random variable 
of Y is a mixtures of I single-shot gathers. If the single-shot 
gathers are also grouped into a random vector X=[X,, X,, . 
. . , x1lT, then we can relate the multishot data to single-shot 
data as follows 

where A is a KxI matrix known as the mixing matrix. In the 
previous sections, we describe solutions to the reconstruc- 
tion of X from a given vector of mixtures Y for the particular 
case in which K=I. Our objective in this section is to derive 
solutions for recovering X from Y for the more common 
cases in which Kc1 (i.e., the number of mixtures is smaller 
than the number of single-shot gathers). 
[0184] In solving the underdetermined decoding problem 
(i.e., KeI), the estimation of A does not suffice to determine 
the single-shot gathers because we have more degrees of 
freedom than constraints. So it is customary to consider a 

two-step process for recovering single-shot gathers: (i) the 
estimation of the mixing matrix, A, and (ii) the inversion of 
A to obtain the single-shot gather vector X. This is the 
approach we will follow in this section. The cornerstone for 
estimating the mixing matrix and its inverse in this section 
is the notion of sparsity. 

[0185] Even when the mixing matrix A is known, since the 
system in Eq. (1.66) is underdetermined, its solution is not 
unique. One approach consists of dividing the scatterplot 
into frames in which only one single-shot gather is active. 
Thus the scatterplot has four frames that we are interested in 
for the extraction of single-shot gathers. In the geometrical 
approach to the extraction of single-shot gathers, each of 
these frame is regarded as a representation of the single-shot 
gathers. By selecting an area where only two single-shot 
gathers are active, say X, and X,, and zero-padding the 
scatterplot outside this area, we produce a deterministic 
system like this one: 

from which we can recover X, and X,. Unfortunately, this 
approach sometimes produces poor results because there are 
often significant numbers of active points are outside our 
defined frame. Actually, the results are sometime quite 
rough. 
[0186] One way of improving the geometric extraction of 
single-shot gathers is to use sparse matrices in addition to 
sparse data-for example, the following mixing matrix: 

[0187] One may wonder how to produce simultaneously 
negative and positive polarized seismic sources which will 
lead to this mixing matrix. In vibroseis source, this is easily 
achieved because we have direct control of the phase of the 
vibroseis source. However, it is a much more difficult 
proposition in marine acquisition. In any case, at least the 
following 2x3 matrix 

corresponding to two mixtures and three single-shot gathers 
can be used. Notice that in this case only two are active at 
any given sample of the mixtures. 
[0188] Another way of improving the effectiveness of 
geometrical extraction is to transform mixtures in the F-X or 
T-F-X domain and perform the extraction in these domains. 
The transformation from the T-X domain to the F-X domain 
is done by taking the Fourier transforms of the mixtures with 
respect to time. The transformation from T-X domain to 
T-F-X domain is done by the taking the window-Fourier 
transforms of the mixtures with respect to time. One can 
alternatively use wavelet transform, deVille, or any other 
time-frequency transform (see Ikelle and Amundsen, 2005). 
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The data concentration is much more effective in these [0195] Letting c=[l, . . . , 11, the objective function in the 
domains, so their extraction is much more effective. linear program, 

8.2 Extraction of Single-Shot Gathers: the L1-Norm 
Approach 

[0189] Another way of taking advantage of sparsity in the 
extraction of single-shot data X from mixtures Y is to use the 
L,-norm optimization, where q 5  1, through a short path 
search, as suggested by Boffil et al. (200xx) or through linear 
programming techniques (Press et al., 198x). 

Short-Path Implementation 

[0190] The basic idea in the short-path implementation is 
to find X that minimizes the L1-norm, as in Eq. (6). In this 
case, the optimal representation of the data point, 

that minimizes 

is the solution of the corresponding linear programming 
problem. Geometrically, for a given feasible solution, each 
source component is a segment of length IX,I in the direction 
of the corresponding a,, and by concatenation their sum 
defines a path from the origin to Yt. Minimizing 

therefore amounts to finding the shortest path to Yt over all 
feasible solutions. Notice that, with the exception of singu- 
larities, since a mixture space is M-dimensional, M (inde- 
pendent) basis vectors a, will be required for a solution to be 
feasible (i.e., to reach xt without error). 
[0191] For the two-dimensional case (see FIG. 2), the 
shortest path is obtained by choosing the basis vectors ab and 
a", whose angles tan-l(aZb/alb) and tan-l(az"/al") are clos- 
est, from below and from above, respectively, to the angle 0, 
of Yt. 
[0192] Let ~ ~ [ a ~ a " ]  be the reduced square matrix that 
includes only the selected basis vectors, and let w,=A;~ and 
let XFt be the decomposition of the target point along ab and 
a". The components of the sources are then obtained as 

XJ'O for j#b,a. (1.72) 

[0193] In practice, when applied to all t=l, . . . , T, each 
reduced matrix W, only needs to be computed once for all 
data points between any two pairs of basis vectors. 

Linear Programming 

[0194] An alternative method is to view the problem as a 
linear program [Chen et al, 19961: 

mincTx subject to Y=AX. (1.73) 

corresponds to maximizing the log posterior likelihood 
under a Laplacian prior. This can be converted to a standard 
linear program (with only positive coefficients) by separat- 
ing positive and negative coefficients. Making the substitu- 
tions, X+[u; v], c+[l; 11, and A+[A, -A], the above 
equation becomes 

minlT[u;v] subject to Y=[A,-AJ[u;v], u,vZO, (1.74) 

which replaces the basis vector matrix A with one that 
contains both positive and negative copies of the vectors. 
This separates the positive and negative coefficients of the 
solution X into the positive variables u and v, respectively. 
This can be solved efficiently and exactly with interior point 
linear programming methods (Chen et al, 1996). Quadratic- 
programming approaches to this type of problem have also 
recently been suggested (Osuna et al., 1997). 
[0196] We have used both the linear-programming and 
short-path methods. The linear-programming methods were 
superior for finding exact solutions in the case of zero noise. 
The standard implementation handles only the noiseless case 
but can be generalized (Chen et al., 1986). We found 
short-path methods to be faster in obtaining good approxi- 
mate solutions. They also have the advantage that they can 
easily be adapted to more general models, e.g., positive 
noise levels or different apriors. 

Flowchart 

[0197] In summary, the algorithm for decoding underde- 
termined mixtures can be cast as follows: 
[0198] (1.) Collect at least two mixtures using either two 
boats or two source arrays. 
[0199] (2.) Estimate the mixing matrix using either histo- 
gram approach, probably density approach, the cumulant 
optimization criterion. 
[0200] (3.) Extract data using either the geometrical 
approach, the L1 -norm optimization or short-path approach. 

8.3 Algorithm #7 

[0201] In this section and the rest of the invention, we 
assume that only a single mixture of the data is available 
(i.e., K=l and I>l). Thus we cannot use the sparsity-based 
method described in the previous section. The approach that 
we will now follow consists of constructing new additional 
mixtures that we call virtual mixtures. The construction of 
virtual mixtures is primarily based on our a priori knowledge 
of multishooting acquisition geometries. It is also based on 
processing schemes which allow us to exploit this a priori 
knowledge to construct virtual mixtures. In this section, we 
describes how adaptive filtering and sources encoded in a 
form similar to TDMA (i.e., contiguous timeslots of about 
100 ms are located at each source) can be used to create 
virtual mixtures. 
[0202] The decoding method that we have just described 
does not apply to sources with short duration like the one 
encountered in marine acquisition because these sources are 
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stationary. We here propose an alternative method based on 
the time delays of the source signatures. So we now define 
the multishoot as follows: 

with 

where a(t) is the stationary marine-type source signatures 
like the one described in FIG. 2.xx and H,(x,,t) are the 
bandlimited impulse responses associated with the i-th shot 
point of the multishot array. We do not assume that the 
source sirnatures a(t) are unknown. However. we assume 

u , , 
that T, are known. The amplitude spectra of the sources can 
be identical or different; this choice has no bearing on the 
decoding. However, the delays between the source signa- 
tures must be a priori knowledge. To facilitate our discus- 
sion, we will express as a function the single-shot gather as 
follows: 

where AT is the time delay between consecutive shot points 
in the multishooting array. AT must be significant to ensure 
that the statistic decoding as the ones describe in the 
previous sections can be used in the decoding P(x,,t). For a 
multishot gather of 1000 traces, it is desirable to have AT 
with 50 samples or more to form a total of 50,000 samples, 
which is sufficient for ICAprocessing. We will see later how 
this number is computed. Another key assumption here is 
that the shot gathers are so closely spaced, say, 25 m or less, 
so that an adaptive filtering technique can be used between 
two consecutive single-shot gathers. 
[0203] The basic idea is that we can create shot gathers 
with significant time delays between them and perform a 
decoding sequentially, one window of data at a time. Let us 
start with the first window. We will denote the data in this 
window by Q,(x,,t) and the contribution of the k-th single- 
shot gather to Q,(x,,t) by K,,,(x,,t), where the first index 
describes the window under consideration and the second 
index described the single-shot gather. For the case of a 
multishot gather composed of four single-shot gathers, we 
will have 

[0204] We select the first window such that only the first 
single shot P,(x,,t) contributes to Q,(x,,t). In other words, 
K,,,(x,,t)=K,,,(x,,t)=K,,,(x,,t)=O in this window; therefore 
no decoding is needed here. However, we have to properly 
define the boundaries of this window to ensure that Q,(x,, 
t)=K,,,(x,,t). The interval [0, t,(x,)] defines this window 
with t,(x,)=t,(x,)+A~ where t,(x,) is the first break. Thus the 
estimation of the first boundary of the first comes down to 
estimating the first breaks. 
[0205] Let us now move to the second window corre- 
sponding to interval [t,(x,), t,(x,)] of the data, with t,(x,) 
=t,(x,)+A~. We will denote the data in this window by 
Q,(x,,t) and the contribution of the k-th single-shot gather to 
Q2(xr,t) by K,,,(x,,t), where the first index describes the 
window under consideration and the second index describes 
the single-shot gather. For the case of a multishot gather 
composed of four single-shot gathers, we will have 

[0206] K,,,(x,,t)=K,,,(x,,t)=O in this window. Therefore 
the decoding is needed, but it involves only to the first two 
single-shot gathers. The decoding consists of shifting down 
in time K,,, by AT and adapting it K,,,(x,,t). The adaptive 
technique is described in Haykin (1 997) can be used for this 
purpose. We then create a new mixture with the delayed and 
adapted K,,,, which we denote 

Q2'(~r,t)=m2(~,t)*KI,I(~r,t+A~). (1.80) 

where m,(x,t) is the adaptive filter. We then use the classical 
ICA technique for the following system: 

with (k=2). We determine K,,,(x,,t) which we subtract from 
Q,(x,,t) to obtain K,,,(x,,t). 
[0207] (1) Collect single-mixture data P(x,,t) with a mul- 
tishooting array made of I identical stationary source sig- 
natures, which are fired with AT between two consecutive 
shots. 
[0208] (2) Construct the data for the first window corre- 
sponding to the interval [0, t,(x,)] of the data P(x,,t) with 
t,(x,)=t,(x,)+A~, where t,(x,) is the first break. We denote 
these data Q,(x,,t)=K,,,(x,,t). Only the first single-shot 
gather contributes to the data in this window: therefore no 
decoding is needed. 
[0209] (3) Set the counter to i=2, where the index indicates 
the i-th window. The interval of this window is [t,(x,), 
t3(x,)], with t3(xr)=t,(x,)+A~. 
[0210] (4) Construct the data corresponding to the i-th 
window. We denote these data by QZ(x,,t)=Z,,'K,,,(x,,t) 
where K,,,(x,,t) is the contribution of the k-th single shot 
gathers to the multishot data in this window Note that 
K, .(x,,t) is zero if k>i. .,.. . . 
[0211] (5) Shift and adapt K,-,,,, to Kz,k. 
[0212] (6) Use the adapted K,-,,,, as mixtures in addition 
to Q,(x,,t), to decode Q,(x,,t) using the ICA technique. 
[0213] (7) Reset the counter, i+i+l and go to step (4) 
unless we have the last window of the data has just been 
processed. 

8.4 Algorithm #8 

[0214] We here describe an alternative way of decoding 
data generated by source signatures encoded in a TDMA 
fashion (i.e., contiguous timeslots of about 100 ms are 
allocated at each source signatures). Our decoding is based 
on the same principles as the previous one-that is, 
[0215] (i) Known time delays can be introduced between 
the various shooting points via the source signature; 
[0216] (ii) Two closely spaced shooting points produce 
almost identical responses. However, here we assume that at 
least one single-shot gather, which we will call a reference- 
shot gather, is also available. 
[0217] The basic idea of our optimization to find a match- 
ing filter between the reference shot and the nearest single- 
shot gathers of the multishot gather. We can use, for 
example, the adaptive filters described in Haykin (1 997). 
[0218] If more than one single shot is used, we can also 
use to the reciprocity theorem to further constrain the 
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optimization. In fact, based on the reciprocity theorem, we 
can recover N traces of each of single-shot gather if we have 
N reference shots. 

[0219] (1) Collect a single mixture data with a multishoot- 
ing array made of I identical stationary source signatures, 
which are fired at different times -c,(x,) and collect a refer- 
ence single-shot gather. 
[0220] (2) Adapt this single-shot gather to the nearest 
single-shot gather in the multishot gather. 
[0221] (3) Use the adapted single-shot gathers as new 
mixtures in addition to the recorded mixture. 
[0222] (4) Apply the ICA algorithms (1, 2, 3, or 4, for 
example) to decode one single-shot gather and to obtain a 
new mixtures with one single-shot gather. 
[0223] (5) Unless the output of step (4) is two single-shot 
gathers, go back to (4) using the new mixture and the new 
single-shot gather as reference shot or with the original 
reference shot 

8.5 Algorithm #9 

[0224] Here we consider the entire seismic data instead of 
a single multishot gather as we have done earlier in this 
section. From these multishot gathers, we create common 
receiver gathers by re-sorting data, as described in the 
previous sections. We will focus first on the particular case 
in which the multishoot array is made of two shot points 
(i.e., I=2). We will later discuss the extension of the results 
to I>2. 
[0225] The basic idea is to introduce of delay between the 
initial firing shot in the multishooting array in such a way 
that, when data are sorted into receiver gathers, the signal 
associated with a particular shot position in the multishot 
array will have apparent velocities different from the signals 
associated with the other shot points in the multishooting 
array. F-K filtering can then be used to separate one single- 
shot receiver gather from the other. Because of various 
potential imperfections in differentiating the data by F-K 
filtering, the separation results are used only as virtual 
mixtures. Then with ICA we can recover more accurately the 
actual data. 
[0226] Alternatively, one can use -c-p filtering instead of 
F-K filtering. The time delay between shots most be 
designed in such a way that the events of one single-shot 
gather follow a particular shape (e.g., hyperbolic, parabolic, 
linear) while the other events of the other gathers follow 
totally different shapes. 
[0227] (1) Collect single-mixture data with a multishoot- 
ing array made of I identical stationary source signatures 
which are fired at different times -c,(x,). These firing times 
are chosen so that the apparent velocity spectra of single- 
shot gathers can be significantly different to allow us to 
separate the single-shot gathers by F-K dip filtering. 
[0228] (2) Sort the data into receiver gathers. 
[0229] (3) Transform the receiver gathers in the F-K 
domain. 
[0230] (4) Apply F-K dip filtering to produce an approxi- 
mate separation of the data into single-shot gathers. 
[0231] (5) Inverse Fourier-transforms the separated 
single-shot gathers. 
[0232] (6) Use these single-shot receivers gathers as new 

[0233] (7) Produce the final decoded data by using ICA 
techniques. 

8.6 Algorithm #10 

[0234] Consider the problem of decoding a single mixture 
constructed of nonstationarv source signatures. Mathemati- - 
tally, this mixture can be expressed as follows: 

where a,(t) are the nonstationary vibroseis type source 
signatures and H,(x,,t) are the bandlimited impulse 
responses we aim at recovering. We assume that the source 
signatures a,(t) are known. By crosscorrelating the data with 
one of the source signatures, say, ak(t), we arrive at 

where 

and 

[0235] We have denoted the data after crosscorrelation as 
Qk(x,,t) and expressed them as a sum of two fields: Uk(x,,t) 
and Uk(x,,t).The field Uk(x,,t) corresponds to the k-th single- 
shot gather with a source signature wkk(t), whereas Utk(x,,t) 
is the multishot gather containing all the single-shot gathers 
except the k-th single-shot gather. The source signature of 
the it-th (with i+k) single-shot gather contained in Utk(x,,t) 
is now w,. As we discussed in previous sections, the source 
wkk(t) is now stationary, but the source w,(t), with i+k, 
remain nonstationary signals. The new multishot data Q, 
(x,,t) are basically a sum of a nonstationary signal Utk(x,,t) 
and a stationary signal Uk(x,,t). The key idea in our decoding 
in this subsection is to exploit this difference between 
Utk(x,,t) and Uk(x,,t) in order to separate them from Qk(x,,t). 
[0236] The key difference between stationary and nonsta- 
tionary signals is the way the frequency bandwidth is spread 
with time. For a given time window of data large enough 
such that Fourier transform can be verformed accuratelv. the 

2 ,  

resulting spectrum from the Fourier transform will contain 
all the frequencies of stationary data and only a limited 
number of frequencies of the nonstationary data. Moreover, 
if the amplitude of the stationary data and those of nonsta- 
tionarv data are comvarable. the freauencies associated with 

mixtures in addition to p(x,,t). the nonstationary tend to have disproportionately high 
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amplitudes because they are actually a superposition of the [0246] (7) Reset the counter, i+i+l, and go to step (3) 
amplitudes of stationary and nonstationary signals. We here unless i=I. 
propose to use these anomalies in the amplitude spectra of 
Q,(x,,t) to detect the frequencies associated with the non- 8.7 Algorithm #11 
stationary signals and filter them out of our spectra. We first 
take a window of data of a size of, say, 40 traces by 100 
samples in time. We denote the data in this window by 
Q~~) (x , ,~ ) ,  where the index j is used to identify the window 
of the data under consideration. We then Fourier-transform 
~,O)(x~,t)  to obtain ~ ,~ ) (x , , o ) .  We can now compute the 
following function, 

~ : ' ( w )  = Q?'(x7, w),  (1.87) 
XI 

which allows us to detect the abnormal frequencies with the 
presence of nonstationary signal in ~ ,~ ) (x , , o ) .  
[0237] Let us return to the detection of abnormal frequen- 
cies. We first match the scale of the spectrum of l~,(')(o)l to 
that lwk,(')(o)l. Suppose that l~,(')(o)l is the scaled spectrum. 
We then define a new spectrum as follows: 

- 

[0247] One can also use the same idea by making the delay 
of one shot stationary and other one nonstationary. Basically 
the concept we used in the algorithm that we just described 
for the time axis is extended to the receiver axes. 
[0248] The basic idea is to introduce the delay between the 
initial time of the firing shots in such a way that when data 
are sorted into receiver gathers or CMP gathers, the signal 
associated with some of the shot points can treated spatially 
as nonstationary signal whereas the signals associated with 
other are shots are treat as stationary signal. We can then 
filter the nonstationary signal by Fourier-transforming data 
and zeroing the amplitude below a certain threshold. 
[0249] Let us consider a case of two simultaneous sources 
to illustrate this technique. The initial firing of the source S, 
is constant at to throughout the survey, whereas the initial 
firing time of source S, alternates between t, and t, from shot 
to shot. When data are sorted out into receiver gathers or 
CMP gathers, we can see that the events associated with S, 
are stationary whereas events associated with S, vary rapidly 
and are nonstationary. Our approach is to filter out the 
nonstationary events and we can recover the stationary 
signals which correspond to a single source. Alternatively, 
we can filter out the stationary signal and then recover the 
second source. 

[0238] We then use F-X interpolation described in Ikelle [0250] (1) Collect single-mixture data with a multishoot- 

and ~~~~d~~~ (2005) to recover a field quite close to ing array made of I identical stationary source signatures, 

Uk(x,,o). The results shows that the resulting data, after which are fired at different times -c,(x,). These firing times 

inverse window-Fourier transform, are indeed quite close to are chosen so that the event of one single-shot gather of 

the actual data. However, an even more accurate solution multishot gather can be stationary, whereas those of other 

can be obtained by adding it to Qk(x,,t) to form an additional single-shot gathers of a multishot gather are nonstationary. 

mixtures that we will call Q'k(x,,t), Now we have two Thus we can use the differences between stationary and 
nonstationary signals to create a new mixture (virtual mix- mixtures; i.e., 
ture). 

where a is a constant. We can then use the ICA-decoding 
algorithm to recover Ukl and Uk, For greater accuracy, we 
can consider solving this ICA by moving window so that 
small variations of a with time can be allowed. 
[0239] The algorithm can be implemented as follows: 
[0240] (1) Collect single-mixture data P(x,,t) with a mul- 
tishooting array made of I different nonstationary source 
signatures, a,(t), . . . , aAt). 
[0241] (2) Set the counter to i=b(t)=a,(t) and U(x,,t)=P 
(x,,t). 
[0242] (3) Crosscorrelate a,(t) and U(x,,t) to produce Q(x,, 
t). The data Q(x,,t) are now a mixture of stationary and 
nonstationary signal. 
[0243] (4) Separate the nonstationary signal from the 
stationary signals. We denote the nonstationary signal by 
Q,,(x,,t) and the stationary signal by Q,,(x,,t). 
[0244] (5) Construct a two-dimensional ICA using Q(x,,t) 
and Q,,(x,,t) as the mixtures. 
[0245] (6) Apply ICA to obtain the single-shot gather 
P,(x,,t) and a new mixture made of the remaining single-shot 
gathers that we denote U(x,,t). 

[0251] (2) Sort the data into receiver or CMP gathers. 
[0252] (3) Transform the receiver gathers to the F-K or 
K-T (wavenumber-time) domain. 
[0253] (4) Separate the nonstationary signals from the 
stationary signals. We denote the nonstationary signal by Q,, 
and the stationary signal by Q,, 
[0254] (5) Construct a two-dimensional ICA using Q(x,,t) 
and Q,,(x,,t) are the mixtures. 
[0255] (6) Apply ICA to obtain the single gather P, and a 
new mixture made of remaining single-shot gathers that we 
denote U(x,,t). 
[0256] (7) Readjust the time delay so that events associ- 
ated with one shot become stationary, whereas the events 
associated with the other shots remain nonstationary 
[0257] (8) Go to step (4) unless the output of step (6) is 
two single-shot gathers. 

8.8 Algorithm #12 

[0258] We consider an acquisition with two simultaneous 
sources, one a monopole and the other a dipole. And we 
record the pressure and vertical component of particle 
displacements. So we can form a linear system as follows: 
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[0259] The deghosting parameters a(&,o), at(kX,o), fl(kx, 
o )  can be found in Chapter 9 of Ikelle and Amundsen 
(2005). We can then reconstruct Pl(kx,o) and P2(kx,o) and 
one of the ICA algorithms (number 1,2,3, or 4) to decode 
data. One can extend this approach to three or four sources 
by using a horizontal source and recording horizontal com- 
ponents of the particle velocity. 
[0260] (1) Collect a single mixture of multicomponent 
data P(x,,t) with a multishooting array made of I12 monopole 
sources and I12 dipole sources. 
[0261] (2) Solve the system of equation in (1.90)-(1.91) to 
recover single-shot gathers. 

8.9 Algorithm #13 

[0262] For cases in which the sources are located near the 
sea surface, the up-down separation (see Ikelle and Amund- 
sen, 2005) can be used to create two virtual mixtures: as 
follows: 

u(xnt)=a21(t)xl(xnt)+cr,,(t)n2(xn>t). 

where a,(t) are short-duration function (with sometime 
slight lateral variations), where d(x,,t) is the downgoing 
wavefield, and where u(x,,t) is the upgoing wavefield. The 
single-shot gathers are xl(x,,t) and x2(x,,t). We can then 
decode data using the algorithm of convolutive mixtures 
(algorithm #4) to decode data. 
[0263] One can extend this method to four or more simul- 
taneous shots by using the upidown separation of both the 
pressure and the particular velocity. Here is an illustrations 
of these equations for the pressure and the vertical compo- 
nents of the particular velocity: 

[0264] (1) Collect a single mixture of multicomponent 
data P(x,,t) with a multishooting array made of I sources. 
[0265] (2) Perform an upidown separation. 
[0266] (3) Apply the ICA algorithm (number 4) by treating 
the upgoing and downgoing wavefields as different convo- 
lutive mixtures. 
[0267] Those skilled in the art will have no difficulty 
devising myriad obvious variants and improvements upon 
the invention without undue experimentation and without 
departing from the invention, all of which are intended to be 
encompassed within the claims which follow. 

1. A method of analysis of seismic data, the method 
comprising the steps of  

collecting a single mixture of multicomponent data P(x,,t) 
with a multishooting array made of I12 monopole 
sources and I12 dinole sources: 

forming a linear system of equations between the com- 
ponents of multishot data and the desired single-shot 
data; and 

solving the system of equations to recover single-shot 
gathers. 

2. A method of analysis of seismic data, the method 
comprising the steps of 

collecting a single mixture of multicomponent data P(x,,t) 
with a multishooting array made of I sources; 

performing an upidown separation to produce evenly 
determined equations of convolutive mixtures; and 

applying an ICA algorithm by treating the upgoing and 
downgoing wavefields as different convolution mix- 
tures. 

3. A method of analysis of seismic data, the method 
comprising the steps of 

collecting multisweep-multishot data in at least two mix- 
tures using two shooting boats, or any other acquisition 
devices; 

arranging the entire multishot gather (or any other gather 
type) in random variables Y,, with i varying from 1 to 
I; 

whitening the data Y to produce Z; 
computing cumulant matrices Q @ , ~ )  of the whitened data 

vector Z; 
initializing the auxiliary variables Wt=I; 
choosing a pair of components i and j; 
computing €I,(") using Q @ , ~ )  and deducing 

constructing w(") and updating w'+w(~)w'; 
diagonalizing cumulant matrices: Q@,~)+W(")QZ@,~)[W 

(u)] T; 

returning to the initializing step unless all possible 

with ~ < < 1 ;  and 
reorganizing and resealing properly after the decoding 

process by using first arrivals or direct-wave arrivals. 
4. The method of claim 3 wherein the step of choosing a 

pair of components i and j is carried out randomly. 
5. The method of claim 3 wherein the step of choosing a 

pair of components i and j is carried out in any given order. 
6. A method of analysis of seismic data, the method 

comprising the steps of 
collecting multisweep-multishot data in at least two mix- 

tures using two shooting boats, or any other acquisition 
devices; 

arranging a gather type in random variables Y,, with i 
varying from 1 to I; 

whitening the data Y to produce Z; 
choosing I, the number of independent components, to 

estimate and set p=l; 
initializing w,; 
doing an iteration of a one-unit algorithm on w,; 
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doing an orthogonalization: 

normalizing wp by dividing it by its norm (e.g. wp+w/ 
Ilwll); 

if w, has not converged, returning to the step of doing an 
iGration; 

setting p=p+ 1 ; and 
- A  A 

if p is not greater than I, returning to the initializing step. 
7. The method of claim 6 wherein the step of arranging the 

gather type comprises arranging the entire multishot gather. 
8. A method of analysis of seismic data, the method 

comprising the steps o f  
collecting multisweep-multishot data in at least two mix- 

tures using two shooting boats or any other acquisition 
devices; 

arranging a gather type in random variables Y,, with i 
varying from 1 to I; 

setting the counter to k=l; 
select a region of the data in which only single-shot X, 

contribute to the data; 
computing the kth column of the mixing matrix using the 

ratios of mixtures; 
setting k=k+l, and if k is not greater than I, then returning 

to the step of selecting a region; 
invert the mixing matrix; and 
estimating the single-shot gathers as the product of the 

inverse matrix with the mixtures. 
9. The method of claim 8 wherein the step of arranging the 

gather type comprises arranging the entire multishot gather. 
10. A method of analysis of seismic data, the method 

comprising the steps o f  
collecting multisweep-multishot data in at least two mix- 

tures using two shooting boats, or any other acquisition 
devices; 

taking a Fourier transform of the data with respect to time; 
choosing a frequency slice of data, Y,; 
whitening the frequency slice to produce Z, and V,; 
applying a complex ICA to Z, and p;oducing W,; 
computing B,=W,V, and deducing B,=D~~~(B,-~)B,; 
getting the @dependent components for this frequency 

slice: X,=B,Y,; 
returning to the step of taking a Fourier transform unless 

all frequency slices have been processed; 
using the fact that seismic data are continuous in fre- 

quency to-produce permutations of the random vari- 
ables of X, which are consistent for all frequency 
slices; and 

taking the inverse Fourier-transform of the permuted 
frequency slices with respect to frequency. 

11. A method of analysis of seismic data, the method 
comprising the steps o f  

collecting at least two mixtures using either two boats or 
two source arrays; 

estimating the mixing using orientation lines of single- 
shot gathers in a scatterplot with respect to an inde- 
pendence criterion, the decoded gathers having a cova- 
riance matrix and a fourth-order cumulant tensor and 
having PDFs, the independence criterion based on the 
fact that the covariance matrix and fourth-order cumu- 

lant tensor of the decoded gathers must be diagonal or 
that a joint PDF of the decoded gathers is a product of 
the PDFs of the decoded gathers. 

decoding the multishot data using a geometrical definition 
of mixtures in the scatterplot, or using p-norm criterion 
(with p smaller than or equal to 1) to perform the 
decoding point by point in the multisweep-multishot 
data. 

12. A method of analysis of seismic data, the method 
comprising the steps of  

collecting single-mixture data P(x,,t) with a multishooting 
array made of I shot points, which are fired with AT 
between two consecutive shots; 

constructing the data for the first window corresponding 
to the interval [0, t,(x,)] of the data P(x,,t) with 
t,(x,)=t,(x,)+A~, where t,(x,) is the first break. We 
denote these data Q, (x,,t)=K,,, (x,,t); 

setting the counter to i=2, where the index indicates the 
i-th window, the interval of this window being [t,(x,), 
t3(~,)1, with ~~(X,)*Z(X,)+AT; 

constructing the data corresponding to the i-th window, 
denoting these data by 

where K,,,(x,,t) is the contribution of the k-th single shot 
gathers to the multishot data in this window; 

shifting and adapting K,-,,,, to Kz,k; 
using the adapted K,-,,,, as mixtures in addition to 

Q,(x,,t), to decode Q,(x,,t) using an ICA technique; and 
resetting the counter, i+i+l and returning to the step of 

constructing the data corresponding to the i-th window, 
unless the last window of the data has just been 
processed. 

13. A method of analysis of seismic data, the method 
comprising the steps of  

collecting a single mixture data with a multishooting array 
made of I identical stationary source signatures, which 
are fired at different times -c,(x,) and collecting a ref- 
erence single-shot gather; 

adapting this single-shot gather to a nearest single-shot 
gather in the multishot gather; 

using the adapted single-shot gathers as new mixtures in 
addition to the recorded mixture; 

applying the ICA algorithms to decode one single-shot 
gather and to obtain new mixtures with one single-shot 
gather; and 

unless the output of the applying step is two single-shot 
gathers, returning to the applying step using the new 
mixture and the new single-shot gather as reference 
shot or with the original reference shot. 

14. A method of analysis of seismic data, the method 
comprising the steps of  

collecting single-mixture data with a multishooting array 
made of I identical stationary source signatures which 
are fired at different times -c,(x,), the firing times chosen 
so that the apparent velocity spectra of single-shot 
gathers can be significantly different; 

sorting the data into receiver or CMP gathers; 
transforming the receiver or CMP gathers in the F-K 

domain: 



Nov. 29,2007 

applying F-K dip filtering to produce an approximate 
separation of the data into single-shot gathers; 

inverse Fourier-transforming the separated single-shot 
gathers; 

using these single-shot receivers gathers as new mixtures 
in addition to p(x,,t); and 

producing the final decoded data by using ICA tech- 
niques. 

15. A method of analysis of seismic data, the method 
comprising the steps of: 

collecting single-mixture data P(x,,t) with a multishooting 
array made of I different nonstationary source signa- 
tures, al(t), . . . , alt); 

setting the counter to i=b(t)=a,(t) and U(x,,t)=P(x,,t); 
crosscorrelating al(t) and U(x,,t) to produce Q(x,,t), 

whereby the data Q(x,,t) are a mixture of stationary and 
nonstationary signal; 

separating the nonstationary signal from the stationary 
signals, denoting the nonstationary signal by Q,,(x,,t) 
and the stationary signal by Q,,(x,,t); 

constructing a two-dimensional ICA using Q(x,,t) and 
Q,,(x,,t) as the mixtures; 

applying ICA to obtain the single-shot gather P,(x,,t) and 
a new mixture made of the remaining single-shot 
gathers that denoted as U(x,,t); 

resetting the counter, i+i+l, and returning to the cross- 
correlating step unless i=I. 

16. A method of analysis of seismic data, the method 
comprising the steps of: 

collecting single-mixture data with a multishooting array 
made of I identical stationary source signatures, which 
are fired at different times -c,(x,), these firing times 
chosen so that the event of one single-shot gather of 
multishot gather can be stationary, whereas those of 
other single-shot gathers of a multishot gather are 
nonstationary ; 

sorting the data into receiver or CMP gathers; 
transforming the receiver or CMP gathers to the F-K or 

K-T (wavenumber-time) domain; 
separating the nonstationary signals from the stationary 

signals, denoting the nonstationary signal by Q,, and 
the stationary signal by Q,; 

constructing a two-dimensional ICA using Q(x,,t) and 
Q,,(x,,t) as the mixtures; 

applying ICA to obtain the single gather P, and a new 
mixture made of remaining single-shot gathers denoted 
as U(x,,t); 

readjusting the time delay so that events associated with 
one shot become stationary, whereas the events asso- 
ciated with the other shots remain nonstationary; 

returning to the separating step unless the output of the 
applying step is two single-shot gathers. 

17. A method of analysis of seismic data, the method 
comprising the steps of: 

collecting multisweep-multishot data in at least two mix- 
tures using two shooting boats or any other acquisition 
devices; 

arranging a gather type in random variables Y,, with i 
varying from 1 to I; 

whitening the data Y to produce Z; 
initializing auxiliary variables W'=I and Zt=Z; 
choosing a pair of components i and j; 
computing 0,(") using the cumulants of Z' and deducing 

Omm(o) thereby; 

if 0,,,(")>, E, constructing w(") and updating w'+w(") 
W'. 

rotating the vector Z': z'+w(")z'; 
returning to the choosing step unless all possible 0,,,(") 

SE,  with ~ < < 1 ;  and 
reorganizing and resealing properly after the decoding 

process by using first arrivals or direct-wave arrivals. 
18. The method of claim 17 wherein the step of arranging 

the gather type comprises arranging the entire multishot 
gather. 

19. The method of claim 17 wherein the step of choosing 
a pair of components i and j is carried out randomly. 

20. The method of claim 17 wherein the step of choosing 
a pair of components i and j is carried out in any given order. 

21. A method of subsurface exploration, the method 
carried out with respect to imaging software for analyzing 
single-shot data and developing imaging results therefrom, 
the method comprising the steps of: 

performing a multi-shot, and collecting multi-shot data; 
decoding the multi-shot data, yielding proxy single-shot 

data; 
carrying out analysis of the proxy single-shot data by 

means of the imaging software, thereby yielding imag- 
ing results from the proxy single-shot data. 

22. The method of claim 21 wherein the step of perform- 
ing a multi-shot comprises only a single sweep, the method 
comprising the additional step, performed between the per- 
forming step and the decoding step, of numerically gener- 
ating an additional sweep from the multi-shot data, the 
decoding step carried out with respect to the single sweep 
and the additional numerically generated sweep. 

23. A method of subsurface exploration, the method 
carried out with respect to imaging software for analyzing 
single-shot data and developing imaging results therefrom, 
the method comprising the steps of: 

acquiring multisweep-multishot data generated from sev- 
eral points nearly simultaneously, carried out onshore 
or offshore, denoting by K a number of sweeps and by 
I a number of shot points for each multishot location; 

if K=l, numerically generating at least one additional 
sweep, using time delay reference shot data, multicom- 
ponent data; 

if K=I, and a mixing matrix is known, performing the 
inversion of the mixing matrix to recover the single- 
shot data; 

if K=I, and a mixing matrix is not known, using PCA or 
ICA to recover single-shot data; 

if Kc1 (with K equaling at least 2), then 
(i) estimate the mixing using the orientation lines of 

single-shot gathers in the scatterplot, the independence 
criterion based on the fact that the covariance matrix 
and fourth-order cumulant tensor of the decoded gath- 
ers must be diagonal or that the joint PDF of the 
decoded gathers is the product of the PDFs of the 
decoded gathers; and 

(ii) decode the multishot data using the geometrical 
definition of mixtures in the scatterplot, or using 
p-norm criterion (with p smaller or equals to 1) to 
perform the decoding point by point in the multisweep- 
multishot data. 
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