
(19) United States
(12) Patent Application Publication (10) pub. NO.: US 200710028136 A1

FORHAN et al. (43) Pub. Date: Feb. 1,2007

(54) PARITY UPDATE FOOTPRINTS KEPT ON (60) Provisional application No. 601595,678, filed on Jul.
DISK 27, 2005.

(75) Inventors: Carl Edward FORHAN, Rochester,
MN (US); Robert Edward
GALBRAITH, Rochester, MN (US);

Publication Classification

Adrian Cuenin GERHARD, (51) Int. C1.
Rochester, MN (US); Timothy James G06F 11/00 (2006.01)
LARSON, Byron, MN (US); William
Joseph MAITLAND JR., Rochester, (52) U.S. C1. .. 71416

MN (US)

Correspondence Address:
OPPEDAHL & OLSON LLP
P.O. BOX 4850
FRISCO, CO 80443-4850 (US)

(57) ABSTRACT

Parity Update Footprints (PUFPs) are kept on the disk drives
themselves (rather than in nonvolatile RAM) so that the

(73) Assignee: ADAPTEC, INC., Milpitas, CA (US) PUFPs will move along with the RAID arrays and data they
protect. This permits effective detection of and recovery

(21) Appl. No.: 111163,346 from many unexpected-power-loss events, and certain other

types of failures, even in a clustered-adapter configuration or
(22) Filed: Oct. 15, 2005

with a standalone adapter that has no nonvolatile RAM or

Related U.S. Application Data only a little nonvolatile RAM. Desirably, many Set PUFP
and Clear PUFP operations can be coalesced into each write

(63) Continuation of application No. pCTIIB05153253, to the block on the disk which contains the PUFPs, thereby
filed on Oct. 3, 2005. improving system performance.

FLAGS lo3
{INCLUDES VALID BIT) [(

104\,

105 ---_ ARRAY OEU ICE NUMBER

1 06 1- STARTING L B A L 1

I

1 0 7 3 DAT& LENGTH I
SK lP MASK

109 SKIP MASK LENGTYl

Patent Application Publication Feb. 1,2007 Sheet 1 of 2 US 200710028136 A1

Patent Application Publication Feb. 1,2007 Sheet 2 of 2 US 200710028136 A1

Feb. 1,2007

PARITY UPDATE FOOTPRINTS KEPT ON DISK

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of international
application number PCTlIB20051053253, filed Oct. 3,2005,
designating the United States, which application is hereby
incorporated herein by reference for all purposes. Applica-
tion number PCTlIB20051053253 claims priority from U.S.
application No. 601595,678 filed on Jul. 27, 2005, which
application is also hereby incorporated herein by reference
for all purposes.

FIELD OF THE INVENTION

[0002] The invention relates generally to DASD (direct
access storage device) systems, and relates more particularly
to RAID (redundant array of inexpensive disks) systems,
and relates most particularly to a goal of reducing to an
absolute minimum the risk that information written to the
drives of a RAID system could get out of synchronization
without being detected andor corrected.

BACKGROUND

[0003] It is not easy designing RAID systems. Users want
RAID systems to be extremely reliable, but they also want
the systems not to cost too much money. Finally they want
the systems to perform well (that is, to pass data into and out
of the system quickly and to provide data very soon after it
is asked for).

[0004] In a RAID system it nearly always happens that if
information is intended to be written to one of the disks, it
is also intended that information be written to at least one
more disk.

[0005] As one example, in a mirrored (RAID 1) system,
identical information is intended to be written to both of
the drives in the mirrored set.

[0006] As a second example, in a RAID 5 system, any
time data is being written to one of the data drives,
generally it is intended that corresponding updated parity
information will be written to a parity drive.

[0007] As a third example, in a RAID 6 system, any time
data is being written to one of the data drives, generally
it is intended that corresponding updated P and Q infor-
mation will be written to drives carrying corresponding P
and Q information.

[0008] It follows automatically from the functional defi-
nitions of the various RAID levels that the RAID system
must keep track of each desired group of disk-writing tasks,
and must keep track of whether each particular disk-writing
task within the group has been completed. This process of
keeping track of groups of disk-writing tasks is typically
accomplished by use of a structure which describes a parity
update which is in progress, that is, an update of data (i.e.
user data) and parity, usually being performed due to a host
write operation or an adapter cache drain operation. For
convenient reference this structure is referred to herein as a
"Parity Update Footprint" or PUFP. The PUFP commonly
contains information to identify the parity stripe(s) being
updated such as the data disk being written, starting LBA
(logical block address) and length of the operation. The

PUFP must be made valid in non-volatile storage of some
type before the data and parity contained in a major stripe
becomes out of synchronization during the parity update
process. The PUFP is invalidated once the parity update
completes (i.e. the data and parity in the major stripe are
once again in synchronization). Other developers of RAID
systems have sometimes used the term "Stripe Lock Table
Entry" or Mirror Log Entry" to denote a structure used for
this purpose. The term "mirror log entry" appears in U.S.
Pat. No. 5,991,804.

[0009] The designer of a RAID system will necessarily
use PUFPs so that the RAID system can detect and recover
from race conditions during unexpected power-off events
and certain other types of failures. There is the danger that
power might fail at a time when one of the disks has been
written to and yet another of the disks has not yet been
written to. There is also the danger that certain failures could
occur which prevent a parity update from completing, much
like an abnormal power-off condition. An example of such
a failure would be a problem with a device bus to which
several or all of the disks are attached, such as if a SCSI bus
cable were to get disconnected and reconnected. In the
absence of a PUFP, when the system is later powered up, the
disks will not be in synchronization, that is, some will
contain old data and others will contain new data. Subse-
quent reads from the disks will run the risk of being incorrect
or out of date without the RAID system detecting this
condition.

[0010] PUFPs are necessary for many RAID levels such as
RAID 5 and RAID 6 to ensure that the adapter can detect
andor recover from failures or abnormal power-off condi-
tions during a parity update, which could leave the data and
parity in a major stripe out of synchronization with each
other and result in data integrity problems. RAID 1 may also
use the same mechanism since it is desirable to detect andor
recover when mirror synchronization is lost, for example,
during a power off during a write operation which writes the
data to both mirrored disks.

[0011] The usual implementation of a PUFP is to store it
in nonvolatile RAM in a RAID adapter. With the PUFP
stored in nonvolatile RAM (e.g. battery-backed static RAM
or DRAM) then the RAID system could be suddenly pow-
ered down, and then later powered on again, and part of the
power-on process can be a check of the nonvolatile RAM to
see if there are any PUFPs that had not been invalidated. If
there is a PUFP that has not been invalidated, the system
knows that at least one disk-writing operation did not finish.
This detects such a condition. In addition the PUFP permits
finishing the hitherto-unfinished disk-writing operation
(assuming the drive that was being written to has not failed),
whereby the PUFP can be invalidated, and this recovers
from the failure.

[0012] Nonvolatile RAM costs money, and the battery that
makes the RAM nonvolatile does not last forever. What's
more, it is not easy to predict exactly when a battery will fail.
This means that the prior-art approach of storing PUFPs in
nonvolatile RAM has drawbacks.

[0013] Another drawback of some prior-art RAID systems
stems from the fact that to solve some other problems, the
designer may have chosen to use an N-way RAID adapter
configuration (i.e. clustered configuration). This is a con-
figuration in which multiple (two or more) RAID adapters

Feb. 1,2007

are attached to a common set of disk drives. These RAID
adapters may exist in different host systems, physically
separated from one another, and on very different power
boundaries. In such an environment, it is a common expec-
tation that if one adapter (or the system in which it is located)
fails, another adapter can take over the operation of the disks
(and RAID arrays) and continue to provide access to the data
on the disk drives. But the decision to employ such a
configuration, while reducing the risk of loss of data due to
certain types of failures, gives rise to new failure modes.

[0014] As an example of a failure mode that arises, if
PUFPs are simply kept in nonvolatile RAM, as is commonly
done on a standalone adapter, then it may be impossible, or
very difficult, to extract the PUFPs from a failed adapter to
use on an adapter which now needs to take over the
operation of the disksiarrays.

[0015] In an effort to address this problem, some RAID
system designers will "mirror" the PUFPs between the
nonvolatile RAMS of the multiple RAID adapters. This does
not necessarily work when the adapters are on different
power boundaries and may not all be powered on at the time
when a particular adapter or system fails.

[0016] There has thus been a long-felt need for a way to
set up a RAID system so that it can recover from any of a
variety of power-loss and failure conditions, and can permit
such recovery even in a clustered-adapter configuration. It
would be extremely helpful if such an approach could be
found that had the potential to address the problem of the
cost of non-volatile RAM and the risk that the battery for the
RAM will not last forever.

[0017] In the case of a standalone RAID adapter that has
no nonvolatile RAM, or does not have very much, it would
be very helpful if detection andor correction of problems
associated with unexpected power-down could nonetheless
be accomplished.

[0018] The designer of a RAID system faces not only
demands of reliability and cost, but also performance. As
will be discussed below, there are a variety of approaches
which one might be tempted to employ to address the
problems discussed above, and many of them lead to
severely degraded performance of the RAID system. It
would thus be very helpful if an approach could be found
which addressed the problems of recovery from lack of
synchronization of drives due to failures or power-down
events, and which addressed the desire to be able to accom-
modate a clustered-adapter configuration, and which
addressed cost of nonvolatile RAM and possible battery
failure, and which approach did not degrade performance
too much.

SUMMARY OF THE INVENTION

[0019] Parity Update Footprints (PUFPs) are kept on the
disk drives themselves (rather than or in addition to non-
volatile RAM) so that the PUFPs will move along with the
RAID arrays and data they protect. This permits effective
detection of and recovery from many unexpected-power-
loss events and certain other types of failures even in a
clustered-adapter configuration or with a standalone adapter
that has no nonvolatile RAM or only a little nonvolatile
RAM. Desirably, many Set PUFP and Clear PUFP opera-
tions can be coalesced into each write to the block on the
disk which contains the PUFPs.

DESCRIPTION OF THE DRAWING

[0020] The invention will be described with respect to a
drawing in several figures.

[0021] FIG. 1 shows a Parity Update Footprint and a block
containing several Parity Update Footprints.

[0022] FIG. 2 shows an exemplary RAID-5 array with
Partity Update Footprints on disk according to the invention.

DETAILED DESCRIPTION

[0023] Turning first to FIG. 1, what is shown is a Parity
Update Footprint 101 and a block 102 containing several
Parity Update Footprints 101-1 through 101-N. In an exem-
plary embodiment, the PUFP 101 contains:

[0024] flags 103, including a validinvalid bit indicating
whether the PUFP has been set or cleared;

[0025] array ID 104, which indicates which of several
drive arrays is being referred to;

[0026] array device number 105 which indicates which
device in the array is being referred to;

[0027] starting LBA (logical block address) 106 indicating
the starting location on the device for the write that is to
be performed;

[0028] data length 107 indicating how much data is to be
written;

[0029] skip mask 108 and skip mask length 109, which
implement the well-known "skip mask" function for disk
drives.

[0030] It will be appreciated that the precise elements
described here in an exemplary PUFP could be changed in
some ways without departing in any way from the invention.
As one example, in some older drives a cylinder-head-sector
scheme was used instead of an LBA scheme to communicate
the starting location of blocks to be stored. With such an
older drive the PUFP could have used a CHS value rather
than an LBA value. Some drives lack the "skip mask"
feature in which case the skip mask and skip mask length
values would not be used. Also, importantly, a name for this
structure other than "parity update footprint" could be used
to describe it, without the use of the structure departing in
any way from the invention. In addition, while the invention
is described in embodiments using hard disk drives, it should
be appreciated that the invention offers its benefits for an
array of any type of direct access storage device. Thus the
term "direct access storage device" should not be narrowly
construed as meaning only traditional rotating magnetic disk
drives, but also other types of drives including flash drives.

[0031] Turning now to FIG. 2, what is shown is an
exemplary RAID-5 array 111 with Parity Update Footprints
on disk according to the invention. In this embodiment, there
are four drives 110-1 through 110-4. The drives are divided
up into stripes such as stripe 112, which has data on three
drives, in this case 110-1 through 110-3, and parity on a
fourth drive, in this case 110-4. (In a different stripe, the
drive receiving the parity might not be drive 110-4.)

[0032] Each drive 110-1 through 110-4 has a reserved
portion of the drive to receive metadata relating to the RAID
system, the metadata including a PUFP block 113.

Feb. 1,2007

[0033] The RAID adapter can include a PUFP block buffer
114 for each of the drives 110-1 through 110-4, which is used
to coalesce multiple "set" and "clear" functions before
writing the contents of the buffer 114 to the disk, as
described in more detail below. Writes are done from buffer
114 to disk, as required, to effect the "set" and "clear" of the
PUFPs.

[0034] It will be appreciated that while FIG. 2 shows an
exemplary RAID-5 array with four drives, nothing about the
invention requires that the level of RAID be 5 nor that the
number of drives be four. The RAID level might be 1 or 6
or some other level, the only requirement for the invention
to offer its benefits being that the RAID level be one where

this could be the single data disk being written. Altema-
tively the parity disk could always be used. Note: If the
data disk containing valid PUFPs were to fail causing the
array to become degraded, the lost PUFPs would become
unneeded.

[0041] For RAID 6 doing a normal parity update (Read-
XOR-Write of data1Read-XOR-Write of P parity1Read-
XOR-Write of Q parity), this could be the data disk being
written, and one of the two parity disks (e.g. the P parity
disk). Alternatively both parity disks could always be
used. Note: If both disks containing valid PUFPs were to
fail causing the array to become degraded, the lost PUFPs
would become unneeded. -

synchronization across two or more drives is important. The
number of drives could be as few as two (for example with [0042] Second, multiple PUFPS are kept in a single block

RAID 1) or could be larger (for example a RAID-6 system 102 (FIG. 1) on each disk.

with sixteen or more drives). r00431 Third. as workloads increase and several PUFPs
L

[00351 One of the benefits of the invention can be appre- are desired to be made valid on a disk (i.e. "Set") in the same

ciated from the above discussion alone, namely that keeping timeframe when several PUFPs are desired to be invalidated

the pUFps on disk provide an alternative for On a disk (i.e. many Set and can

RAID adapters which, for cost or other reasons, do not have be coalesced into each write to the block on the disk which

sufficient NVRAM for storage of PUFPs. Where such a contains the PUFPs.

standalone RAID adapter is employed, adapter firmware or
driver software can establish the PUFP reserved metadata
area on each drive, can create PUFPs and stored them to the
drives, can "set" and "clear" the PUFPs on the drives, and
can detect and recover from the types of failure and power-
loss conditions discussed previously.

[0036] As mentioned above, however, detection and
recovery from certain failure and power-loss conditions is
but one of many goals to which a RAID system designer
must strive, another of which is to provide satisfactory
performance. It will, however, be appreciated that if one
were simply to write large numbers of PUFPs to disk (setting
and clearing PUFPs) could lead to a RAID system in which
performance were substantially degraded because of the
large numbers of write activities. After all, at any time that
a PUFP on disk is being written (e.g. set or cleared), the
drive is not available for other read or write tasks. If one
compares how long it takes to write a PUFP to nonvolatile
RAM with how long it takes to write a PUFP to disk, the
write to disk takes longer. These factors, among others,
might prompt some RAID system designers to assume that
there is no benefit, only drawbacks, to the notion of writing
PUFPs to disk.

[0037] It will thus be appreciated that if one is to achieve
the benefits of PUFPs on disk, together with maintaining
close to the performance that would be available if PUFPs
were stored only in non-disk locations (e.g. nonvolatile
RAM), more is needed. It is important to arrive at an
approach by which Parity Update Footprints can be effi-
ciently kept on disk drives, that is, in a way that minimizes
any degradation of performance.

[0038] First, A PUFP is kept on the minimum number of
disks required for the type of array:

[0044] Fourth, placing PUFPs on disk may be done only
when absolutely needed, such as:

[0045] When in a clustered configuration;

[0046] When the PUFPs are not or can not be mirrored
into the nonvolatile RAM of another adapter;

[0047] Only when arrays are degraded (since an optimal
array could have all of its parity resynchronized to correct
the parity synchronization);

[0048] Only when a standalone adapter does not have
sufficient nonvolatile RAM for storage of PUFPs.

[0049] It will also be appreciated that it may be advanta-
geous to use PUFPs kept on disk together with PUFPs kept
in the nonvolatile RAMs of one or more adapters.

[0050] As mentioned above, with PUFPs kept in nonvola-
tile RAM, the PUFPs are read at boot time, so as to learn of
parity or data which is out of synchronization due to a failure
or abnormal power-off condition while a parity update or
other disk write was in progress. Similarly, PUFPs kept on
disk can be read at boot time to accomplish the same ends.

[0051] As mentioned above, for N-way RAID adapters
(i.e. clustered systems), it has been common to mirror the
PUFPs between nonvolatile RAMs of the various adapters.
Such designs relied on the adapters being on common power
boundaries such that it could be counted on that all adapters
were powered up and operational when parity updates were
being performed. In many RAID systems, however, it is not
possible to assume that all of the adapters are on common
power boundaries, in which case merely mirroring PUFPs
between the nonvolatile RAMs of adapters does not protect
fully against the conditions that PUFPs are intended to
protect.

[0039] For RAID 1, this is one of the two mirrored disks.
Note: If the data disk containing valid pUFps were to fail Likewise, as for

causing the array to become degraded, the lost PUFPs adapters, when sufficient NVRAM was not available for

would become unneeded. storing PUFPs, PUFPs were simply not kept and there
existed a risk of data integrity (e.g. if a disk failed and the

[0040] For RAID 5 doing a normal parity update (i.e. array went degraded while parity may have been out of
Read-XOR-Write of datdRead-XOR-Write of parity), synchronization).

Feb. 1,2007

[0053] For non-degraded arrays (arrays with no failed
disks) it is possible to simply consider the array unprotected
and to initiate a full resynchronization of parity for the array
when it is detected that PUFPs may have been lost. How-
ever, if a disk were to fail and the array become degraded
when parity may have been out of synchronization, then a
chance of loss of data integrity would exist. This is an
example of a situation where a PUFP is an essential aspect
of system design so as to be able to detect andor correct the
loss of synchronization.

[0054] It will be appreciated that those skilled in the art
will have no dificulty at all in devising myriad obvious
improvements and variants of the embodiments disclosed
here, all of which are intended to be embraced by the claims
which follow.

4. The method of claim 3 further comprising the steps of:

upon booting of the adapter, reading the predetermined
reserved area on a first one of the storage devices for
the presence of data structures indicative of storage
device writes that have not completed;

finding no data structures indicative of storage device
writes that have not completed; and repeating the
reading and finding steps for a next one of the storage
devices, until the reading and finding steps have been
performed for all of the storage devices in the array.

5. The method of claim 3 further comprising the steps of:

upon booting of the adapter, reading a predetermined
reserved area on a first one of the storage devices for
the presence of data structures indicative of storage
device writes that have not completed;

What is claimed is: in the event of finding a data structure indicative of at least
one storage device write that has not completed, per-

1. A method for use with an array of direct access storage
forming the at least one storage device write.

devices and a storage device adapter, the method comprising
the steps of: 6. Amethod for use with an array of direct access storage

devices and at least first and second storage device adapters,
upon booting of the adapter, reading a predetermined

reserved area on a first one of the storage devices for
the presence of data structures indicative of storage
device writes that have not completed;

finding no data structures indicative of storage device
writes that have not completed; and

repeating the reading and finding steps for a next one of
the storage devices, until the reading and finding steps
have been performed for all of the storage devices in
the array.

2. A method for use with an array of direct access storage
devices and a storage device adapter, the method comprising
the steps of:

upon booting of the adapter, reading a predetermined
reserved area on a first one of the storage devices for
the presence of data structures indicative of storage
device writes that have not completed;

in the event of finding a data structure indicative of at least
one storage device write that has not completed, per-
forming the at least one storage device write.

3. A method for use with an array of direct access storage
devices and a storage device adapter, each storage device
having an area reserved for metadata stored by the adapter,
the method comprising the steps of:

identifying a group of storage device writes all of which
need to be completed if the storage devices are to
preserve their synchronization;

for each storage device write, creating a respective data
structure indicative of that write not yet having been
performed and storing the data structure in a buffer
within the storage device adapter;

upon the completion of each storage device write, modi-
fying the respective data structure to be indicative of
that write having been performed; and

storing at least two of the data structures to the reserved
area of one of the storage devices in a single write
operation to the storage device.

each storage device having an area reserved for metadata
stored by the adapter, each storage device adapter commu-
nicatively coupled with the array so that each storage device
adapter may be used with the array in the event of failure of
the other storage device adapter, the method comprising the
steps of:

within the first storage device adapter, identifying a group
of storage device writes all of which need to be
completed if the storage devices are to preserve their
synchronization, for each storage device write, creating
a respective data structure indicative of that write not
yet having been performed and storing the data struc-
ture in a buffer within the first storage device adapter,
and storing the data structure from the buffer to the
reserved area of a one of the storage devices; and

within the second storage device adapter, identifying a
group of storage device writes all of which need to be
completed if the storage devices are to preserve their
synchronization, for each storage device write, creating
a respective data structure indicative of that write not
yet having been performed and storing the data struc-
ture in a buffer within the second storage device
adapter, and storing the data structure from the buffer to
the reserved area of the one of the storage devices.

7. The method of claim 6 further comprising the steps of:

upon booting of one of the first and second adapters,
reading the predetermined reserved area on a first one
of the storage devices for the presence of data struc-
tures indicative of storage device writes that have not
completed;

finding no data structures indicative of storage device
writes that have not completed; and

repeating the reading and finding steps for a next one of
the storage devices, until the reading and finding steps
have been performed for all of the storage devices in
the array.

8. The method of claim 6 further comprising the steps of:

upon booting of one of the first and second adapters,
reading the predetermined reserved area on a first one

Feb. 1,2007

of the storage devices for the presence of data struc-
tures indicative of storage device writes that have not
completed;

in the event of finding a data structure indicative of at least
one storage device write that has not completed, per-
forming the at least one storage device write.

9. A method for use with an array of direct access storage
devices and a storage device adapter, each storage device
having an area reserved for metadata stored by the adapter,
the method comprising the steps of:

identifying a group of storage device writes all of which
need to be completed if the storage devices are to
preserve their synchronization;

for each storage device write, creating a respective data
structure indicative of that write not yet having been
performed, and

storing the data structure to the reserved area of one of the
storage devices;

the method further characterized in that the data structure
is not stored in any nonvolatile RAM within the storage
device adapter.

10. The method of claim 9 further comprising the steps of:

upon booting of the adapter, reading the predetermined
reserved area on a first one of the storage devices for
the presence of data structures indicative of storage
device writes that have not completed;

finding no data structures indicative of storage device
writes that have not completed; and

repeating the reading and finding steps for a next one of
the storage devices, until the reading and finding steps
have been performed for all of the storage devices in
the array.

11. The method of claim 9 further comprising the steps of:

upon booting of the adapter, reading a predetermined
reserved area on a first one of the storage devices for
the presence of data structures indicative of storage
device writes that have not completed;

in the event of finding a data structure indicative of at least
one storage device write that has not completed, per-
forming the at least one storage device write.

12. An array of direct access storage devices, the array
comprising at least first and second direct access storage
devices,

the first direct access storage device comprising an area to
which directly addressed writes are performed, and

the second direct access storage device comprising an
area to which directly addressed writes are performed,
and

a predetermined reserved area containing at least first and
second data structures indicative of storage device
writes to the area of the first direct access storage
device to which directly addressed writes are per-
formed, that have not completed.

13. A storage device system comprising:

an array of direct access storage devices;

an adapter communicatively coupled with the array and
having a bus for communicative coupling with a host;

each of the direct access storage devices comprising:

an area to which directly addressed writes are performed,
and

a predetermined reserved area disposed to contain a data
structure indicative of storage device writes to the area
to which directly addressed writes are performed that
have not completed;

the predetermined reserved area of at least one of the
direct access storage devices comprising a data struc-
ture indicative of storage device writes to the area to
which directly addressed writes are performed that
have not completed.

14. Apparatus for use with an array of direct access
storage devices, the apparatus comprising:

a communications bus disposed for communication with
the array of direct access storage devices;

means responsive to booting of the apparatus for reading
a predetermined reserved area on a first one of the
storage devices for the presence of data structures
indicative of storage device writes that have not com-
pleted;

means responsive to finding no data structures indicative
of storage device writes that have not completed, for
repeating the reading and finding steps for a next one of
the storage devices, until the reading and finding steps
have been performed for all of the storage devices in
the array;

the previous means further responsive to finding a data
structure indicative of at least one storage device write
that has not completed, for performing the at least one
storage device write.

15. Apparatus for use with an array of direct access
storage devices, the apparatus comprising:

a communications bus disposed for communication with
the array of direct access storage devices;

a buffer within the apparatus;

means identifying a group of storage device writes all of
which need to be completed if the storage devices are
to preserve their synchronization;

means responsive to each storage device write, for creat-
ing a respective data structure indicative of that write
not yet having been performed and storing the data
structure in the buffer;

means responsive to the completion of each storage
device write, for modifying the respective data struc-
ture to be indicative of that write having been per-
formed; and

means coalescing at least two of the data structures to the
reserved area of one of the storage devices in to a block
stored to the one of the storage devices in a single write
operation to the storage device.

16. The apparatus of claim 15 further comprising:

means responsive to booting of the apparatus for reading
a predetermined reserved area on a first one of the
storage devices for the presence of data structures
indicative of storage device writes that have not com-
pleted;

Feb. 1,2007

means responsive to finding no data structures indicative the previous means further responsive to finding a data
of storage device writes that have not completed, for structure indicative of at least one storage device write
repeating the reading and finding steps for a next one of that has not completed, for performing the at least one
the storage devices, until the reading and finding steps storage device write.
have been performed for all of the storage devices in
the array; * * * * *

	Front Page
	Drawings
	Specifications
	Claims

