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3,317,718
COMPUTER
Walter Jeseph Karplus, 7459 Palo Vista Drive,
Yos Angeles, Calif. 90046
Filed Mar. 22, 1963, Ser. No. 267,255
11 Clalms. (Cl. 235—150. 31)

This invention relates to a discrete-space-discrete-time
computer. More specifically, the invention relates to
a computer in the form of a fully automatic network-
type simulator for solving transient field problems.

In a copending patent application Ser. No. 839,160,
filed Sept. 10, 1959, now Patent No. 3,093,731, by the
same applicant as the instant application, 2 general pur-
pose field simulator is described. The simulator of the
copending application is useful for the solution of most
transient field problems and involves essentially the ap-
plication of one or two initial conditions to a plurality
of modules representing points in space. The initial
conditions are applied by means of a plurality of poten-
tiometers. An additional potentiometer serves to read
or measure the solution which consists of the potential
existing at each module representing a point in space
at the time epoch under consideration. After each
reading a selector switch is rotated and the function of
the potentiometers is interchanged. To employ the
method described in the copending patent application,
it is necessary to read potentials at each step in space
by balancing one of the potentiometers and to advance
the selector switch.

In the present application the transient field simulator
is fully automated to facilitate the solution of nonlinear
field problems. Field properties such as conductivity or
heat capacity which are functions of the field potential
are examples of nonlinear field problems. The system
of the present application consists of a plurality of net-
work node modules interconnected to represent the field
spatially. The node modules of the present application
have a simpler and improved construction in comparison
to the node modules disclosed in the copending patent
application.

An output commutator is employed to sample in turn
the potentials existing during the iritial time epoch of
each of the known node modules. The output of the
commutator is applied to an analog-digital converter so
that the measured analog voltages are converted into
binary form.. The output of the analog-digital converter
is applied to a print-out device which serves to record
the solution. The output of the analog-digital converter
is also directly applied to a digital computer.. The pri-
mary purpose of the digital computer is to store the po-
tentials existing during the initial time epoch of each
of the node modules and to make these potentials avail-
able at subsequent time epochs. The potentials stored at
each time epoch become at the succeeding time epoch
the initial conditions applied to the node: modules.

After all the potentials have been determined for a
given step of the computation and have been printed
out and memorized in the digital computer the system
is ready to proceed to the next step in the calculation.
Memorized potentials within the digital computer are
then read out into a digital-analog converter which con-
verts a memorizid number back to analog form. An
input commutator similar to that used in the output of
the network module unit distributes the memorized po-
tentials to the appropriate node modules. In order that
these potentials be available for the entire calculating
interval (of the order of several seconds) an analog
memory or sample-hold circuit is supplied with each
node module. Dependent upon the type of equation
which is to be solved,

algebraic combinations of one -
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or more initial conditions must be memorized in the
sample-hold circuit of each node module. For example,
in the solution of the diffusion equation only one condi-
tion is necessary. However, in the solution of the wave
and bi-harmonic equation, two initial conditions are
required. Also, in order to handle non-linear problems
additional information must be memorized. One sample-
hold circuit per module supplies for these tasks. The
quantities held in the amalog memories are therefore
combinations of those read out of the digital computer
after each computing epoch.

The system therefore consists essentially of a closed
loop including the node module, the output commuta-
tor, the analog-digital converter, the digital computer,
the digital-analog converter, the input commutator, and
the sample-hold circuits. A control timer is employed
to synchronize the operation of these diverse units and
to assure that each unit operates at the appropriate time
during the computing cycle. The system is therefore
able to automatically operate and print-out solutions
over several hundred time epochs.

In addition to the time saving and convenience effec-
ted by this automation, the system described has a num-
ber of advantages. First, the digital computer can be
employed to obtain and apply correction factors to
counteract drift and otker shortcomings of the compon-
ents in the analog network. For example, the system
can be run initially with zero boundary conditions and
zero initial conditions and the resulting output measured.
This output is due to zero-offset in the amplifiers com-
prising the network. These values can then be employed
to calculate “auxiliary initial conditions” which when
applied to the sample-hold circuits produces the correct
zero output. These correction terms can then be used
throughout the calculation to offset equipment inac-
curacies.

A second important advantage of the digital technique
is that it facilitates the solving of nonlinear problems.

The nonlinear problems to be solved are governed by
equations of the type

20 2)=b P45 (#)

(1)
0
2(c@P) =k T +5 () @)
S 22)=h(0) T2+ (#) 3

as well as sumlar equations in two and three space di-
mensions and modified forms of these equations involv-
ing terms such as

dp D &
k(¢>) <1> faiqs) ét(?d))

These equations descnbe the most important of the
transient field problems arising in engineering and applied
physics. The technique used by the invention is also
applicable to elliptic nonlinear partial differential equa-
tions of the type

2(o(6)22)=14) ”

The presence of the nonlinear terms o, k, and f in Equa-
tions 1, 2, 3 and 4 makes these equations very difficult
to solve by means of existing analog and digital tech-
niques. In the case of presently available analog meth-
ods it is necessary to provide a multitude of nonlinear
elements each possessing a specified nonlinearity. In digi-
tal computing methods it becomes necessary either to
take very small steps in the time domain in order to avoid
computational instability, or it becomes necessary to solve
by slowly converging iterative techniques a large system
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of simultaneous nonlinear algebraic equations at each step
in time; both of these possibilities generally imply un-
economically long computer runs and tax the ability of
even the largest available digital computers.

The field simulator described in the present application
overcomes the aforementioned problems since it has the
following characteristics:

(1) Ability to handle from 100 to 1,000 grid points
distributed in a one, two or possibly three dimensional
region.

" (2) Ability to handle analytic nonlinearities as well
as nonlinearities available only in graphical form, using
a very small amount of nonlinear analog equipment.

(3) Utilization of a relatively small, inexpensive digi-
tal computer (for example, an IBM 797, a Scientific Data
System 920, or a Packard-Bell 250) to perform calcula-
tions which would otherwise be difficult even for a large
computer such as the IBM 7090.

(4) Completely automatic operation involving no in-
tervention. by the operator in the course of a problem
Tun.

(5) Ability to control truncation errors in the time
domain by automatic adjustments of the time step Az in
the course of the solution.

A clearer understanding of the invention will become
apparent upon reference to the drawings wherein:

FIGURE 1a is a finite difference grid which is a graphi-
cal representation of a field at different times for a one
space dimension problem;

FIGURE 15 is a circuit diagram which can be asso-
ciated with each finite difference grid point illustrated in
FIGURE la;

FIGURE 2 illustrates the interrelation of the node
modules for a one space dimension field problem;

FIGURE 3 is a circuit diagram representing a first em-
bodiment of a node module useful in solving certain types
of field problems;

FIGURE 4 is a circuit diagram representing a second
embodiment of a node module useful in solving field prob-
lems;

FIGURE 5 is a circuit diagram representing a third
embodiment of a node module useful in solving field
problems;

FIGURE 6a is a circuit diagram of a single opera-
tional amplifier realization of a node module used in
solving the parabolic and elliptic field equation;

FIGURE 6b is a circuit diagram of a single opera-
tional amplifier realization of a node module used in
solving the parabolic and hyperbolic field equations;

FIGURE 6c is a circnit diagram of a single operation
amplifier realization of 2 node module used in solving the
bibarmonic field equation;

FIGURE 7 is a circuit diagram of a typical node
module including a sample-hold used in the solution of
the parabolic, hyperbolic and elliptic equations;

FIGURE 8 is a block diagram of a first alternative
form of the computer system;

FIGURE 9 is a block diagram
tive form of the computer system;

FIGURE 10 is an example function generator unit
which may be used with the computer system of FIG-
URE 9, and

FIGURE 11 is a flow chart explaining the operation of
the digital computer included in the computer system.

The first step in the discrete-space-discrete-time method,
as in all digital techniques, involves the approximation
of the partial differential equations to be solved by a
system of finite difference equations. A one, two, three
or four dimensional coordinate grid is imagined super-
imposed on the field under study, and attention is limited
to the net points of the grid. In a problem involving
only x and ¢ as independent variables, the finite differ-
ence grid has the general form shown in FIGURE la,
where the x coordinate is generally bounded at x=0 and
x=X while the time coordinate proceeds from zero to

of a second alterna-
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infinity. A typical point within this net is then labeled
0 and the adjacent points in the x and ¢ directions are
labeled 1 through 14 as shown.

The partial derivatives in the equation under study are
then expressed as differences of the potential between
point 0 and points 1 through 14. In order to permit
the variation of Af without the possibility of computa-
tional instability, it is desirable that the finite difference
approximations to be utilized be implicit—that is, ex-
press unknown potential implicitly in terms- of known
potentials. In general, at any step in the computation
the potentials in the line #, and the line fo—At are known
information, while the potentials in the line f,+A? have
to be determined.

The finite difference equation applicable to each net
point is then rearranged and transformed to take the form

a1(¢1—<ﬁo)+a2(¢2—¢o) ‘e
+“n(¢n“¢0)+(¢x—¢0):0 (5)

where the coefficient 4y, a» . . . ay are positive or nega-
tive constants. All nonlinear terms in the equation are
combined in the term ¢y, so that ¢, is a highly nonlinear
function of the potentials ¢g, ¢1 . . . ¢14. The technique
for arranging the nonlinear partial differential equations
in this form is discussed at a later point in the specifica-
tion.

The next step in the discrete-space-discrete-time meth-
od involves the solution of Equation 5 at each point in
the space domain. - For the first time increment, a num-
ber of the potentials in Equation 5 are the specified initial
and boundary conditions. The potentials in line #--Af
constitute the solution for the first time increment. These
solution values are then used as initial conditions in the
next solution cycle in which the potentials in line fo-+2A7
are found. In the succeeding computer cycle the poten-
tials in line f,-+3At are obtained, etc. The solution is
therefore carried out in a stepwise manner in the time
domain.

The construction of the computer system is facilitated
by recognizing the formal similarity of Equation 5 and
Kirchhoff’s node law (Zi,=0) governing a junction of
electrical resistors (of conductances a;, @z . . . ay) link-
ing anode with voltage ¢ with other circuit nodes having
voltages ¢, ¢z - - - ¢n and ¢, A group of electrical
resistors, some positive and some negative, can therefore
be associated with each finite difference grid point along
each space coordinate;, as shown in FIGURE 1b. In
FIGURE 1b the resistors are designated 1/,; through
1/410 and the voltages are designated ¢p through o

An electronic analog computer circuit satisfying Equa-
tion 5 is constructed for each finite difference net point
in the space domain. These circuits are termed node
modules and are interconnected as shown in FIGURE 2.
Each node module is identified with a specific point in the
space domain and has one input and one output. The in-
puts IC correspond to the sum of the “initial conditions”
for each step in the time domain, while the outputs S con-
stitute the potentials at time #-+Ar—hence the problem
solution for that step in the time domain. The practical
realization of these node modules is considered in detail
at a later point in the specification.

The technique for reducing the major types of non-
linear partial differential equations of interest to engi-
neers to the form of Egquation 5 will now be demon-
strated. The equations considered are classified as para-
bolic, hyperbolic, biharmonic and elliptic partial differen-
tial equations, and each classification is considered in
turn. In order to simplify the discussion, it is assumed
that each partial differential equation contains only two
independent variables x and #; but the technique is equal-
ly applicable to problems in two and three space coordi-
nates. It is also assumed that the x and 7 domains are
divided into discrete increments Ax and Af in length (the
problem of varying of the spacing Ax and Az is to be con-
sidered subsequently). The finite difference grid illus-



8,31%,718

B
trated in FIGURE 1a therefore is descriptive of all of the
problems to be considered. In this grid a typical point
0 is selected and adjacent points are designated 1 through
14 as shown. For any step in the calculation it can be
assumed that the potentials in line 7, (that is, at points
9, 4,5, 6 and 10) are known, having been specified initial-
ly or determined in the preceding steps of the calcula-
tion. The potentials in line fo-+Af (that is, at points 7,
1, 2, 3, and 8) are unknowns and must be determined
simultaneously. Of course not all of these points are re-
quired for all types of partial differential equations.

In order to permit the representation of all nonlinear
terms by the potential ¢, in Equation 5, equations of the
general form of Equations 1, 2, and 4 are rearranged and
transformed to read

9% 00 04 0% .)_0
D "oz’ ot on - (6)

where the term F depends upon the specific nature of
the equation. Similarly equations, such as Equation 3,
containing the biharmonic operator, are rewritten as
D¢ ( O¢ 0¢ 0% )_
2 TE (#5003 3p =0
Parabolic partial differential equations

(7

The. rather general nonlinear parabolic differential
equation, Equation 1, is an example of a very important
class of partial differential equations. Assume that the
nonlinear terms ¢, k,and f are provided as graphical plots
of these functions versus ¢. Expanding the term on the
left side of Equation 1 and rearranging yields

T() 5+ 2B 2% (40

022 ' dxz oz (8)
Recognizing that
Qo () _do(e) 04
2z O Oz
Equation 8 may be written as
%, 1 do(@) 06\ _k(#) b _[(s)_,
0z " o(¢) o4 \Ou o(¢) 0z 0(g) )

Each of the partial derivatives with respect to x and ¢
in Equation 9 are now approximated by finite difference
expressions. The first term on the left side is approxi-
mated by the familiar second central difference expression
applicable to the points 1, 2, and 3 indicated in FIGURE
1, as
92_¢>=¢1+¢3—2¢2
2 Ag? (10)
Rewriting this expression in terms of differences with re-
spect to point 0 yields
aii’=¢1—¢0_2¢2—¢0+¢3“¢0
ox? Azl Ag? Ag? (11a)
The first derivative of ¢ with respect to x is written
as

9¢_ du—ou
oz 2Az (11b)

For the time derivative a backward difference expression
may be employed,

aj=¢z—¢o

ot At (11¢)
Substituting Equations 114, 115, and 11¢ in Equation 9
yields

(d1—¢o) _2(¢>2*¢o) 1. {és—a0)

Az? Ax? ' Azx?
1 Ao () Pz —di1\?
* oz (C52).(%552)
_ k(o) (pa—g0 f(¢0)=0
o)\ At o (o) (12)
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Multiplying through by Ax2 and combining the last three
terms on the left hand side, yields

(81—00) —2(pa—¢0) + (d3—po) + (Px—g) =0 (13)
where

_ 1 Sa(g) _
¢x—¢o+4r(¢o)(—r¢ )0(¢12 én)?

_AZk(go) o Az (ay)
Ala(go) (BTOTTENT

To obtain a physical insight into the significance of
these expressions, Equation 13 may now be identified as
a Kirchhoff’s node law equation characterizing the junc-
tion of four resistors-—1/2, 1, 1, and 1 in magnitude as
shown in FIGURE 3. A voltage ¢y is generated by
means of an analog function generator using voltages ¢y,
%0, ¢2, and ¢y as inputs. ¢y, ¢y, and ¢, are known
values, while ¢, ¢, and ¢ are unknown. Voltage sources
acting- at points 1, 2, and 3 must therefore be adjusted
simultaneously to produce the specified voltage at ¢g.
It should be recognized that the typical node circuits of
the type shown in FIGURE 3 for adjacent nodes in the
x domain overlap. Thus point 1 of the node in FIGURE
3 is identical with the point 2 of the node immediately
to the left. Similarly point 3 of the node shown in FIG-
URE 3 is identical with point 2 of the node module jm-
mediately to the right of the one shown,

The function generator required to generate. ¢, would
contain three arbitrary function generators, for example
biased diode function generators, to generate the terms

L _(00(e)\  k(g)Aa? 4 A2 (o)
a(e)\ 00 /o (o)L’ (o)

Each of these diode function generators has one input,
#9, and one output. This output must then be multi-
plied by terms such as (p12—¢11)2 and (pg—gy) and com-
bined in accordance with Equation 14. The function
generator unit therefore -contains three diode function
generators, three multipliers and two or three analog add-
ing circuits. Only one such funcion generating unit is
required for the whole computer system. A commutator
is employed to permit this single function generating unit
to calculate ¢, for each of the node modules in turn,
Note that ¢, is a function of ¢9 which is an unknown
voltage. This indicates that caleulations at each step
in time must be iterative. That is, an initial value for
$ is assumed arbitrarily and Equation 13 is solved, pro-
viding a value for ¢, and hence a new value for ¢y This
process is repeated until the solution, ¢, fails to change
appreciably intwo successive iterations.

In order to reduce the truncation error at each step
in time, a slightly more complex finite difference approxi-
mation may be employed. Thus in place of Equation 114,
the second space derivative may be approximated as the
average of the second derivatives at points 2 and 5, that
is as -

0% _1 ¢1—¢0_2¢2—¢o ! ¢3—¢0+¢4—¢0

oz2 2| Ag? Azr U Age Ag?
_oPs—do | ds—¢y
2 Ax? - Ax? ] (15)
The equation for the time derivative then becomes
0p_ g2—¢s
dt - 2AL (16)

Inserting these approximations in the partial differential
equation, Equation 9, yields

(#1—¢0) —2(p2— o) + (d3—p0) + (pa—ag)
+(d6— o)+ (dx—dg) =0 (17)

where
_ 1 Oa (4)
¢-’3—¢o+20(¢0) ¢ >O(¢12——¢4u)2
A k(o) 282 (¢)
A a(en) PTG as)
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Equation 17 may now be identified with a node circuit
involving 5 positive resistors and 2 negative resistors as
shown in FIGURE 4. Here potentials ¢o, ¢4, 5, and ¢g
are known, ¢y is generated using the function generator
and ¢, @9, and ¢z must be determined simultaneously.

In genmeral, in solving parabolic partial - differential
equations only one initial condition is specified. Equation
17 and the circnit of FIGURE 4 are therefore “non-
self-starting.” That is, they are applicable only after at
least one step in the calcuation has been completed, so
that solutions are kmown for two time increments. In
order to apply Equation 17 and the circuit FIGURE 4
it is therefore mecessary to complete one computer run
using a self-starting formula such as that of Equation
13 and FIGURE 3.

To form the computer system, node circuits such as
those .of FIGURE 3 or FIGURE 4 must be connected
in cascade so that an equation of the type of Equation
13 is solved simultaneously for each point in space.
None of the terms in Equations 13 and 18, and hence
none of the elements in FIGURES 3 and 4, with the ex-
ception of ¢y, is nonlinear or contains the terms Ax or
At. Most node modules can therefore be constructed
using fixed resistors, and all nonlinearities and changes
in time and space increments can be handled by means
of the one function generating unit.

Hyperbolic partial differential equations

An example of a nonlinear equation describing wave
phenomena is Equatjon 2, where the nonlinearities o, k
and f are specified as graphical functions of ¢. Pro-
ceeding as in the case of the parabolic equations, Equation
2 is expanded and rearranged as

L dole)(20)_k9) O6_f(s)_g
@) o) \ow/) @) o8 e(a) o

0% 1
Ot +

The first two terms on the left of Equation 19 are ap-
proximated using Equations 15 and 115 respectively, while
the second time derivative is approximated by the sec-
ond central difference with respect to node 0 as

D otds—2d0

ot? At? (20)

The finite difference approximation of Equation 19 can
then be written as

(1—bo) —2(d3— o)+ (d3—b0) + (¢pa—90)
— 2 (¢g— o) +(de—d0) +(dx—d0) =0 (21)

where
¢x=¢o+%'(lm('a—%(fl>o(¢m—-¢u)z—
2027\ (ke (¢0) oy 2822 ()
2B w20 =00 e

an expression almost identical to Equation 17.

In the electrical analog, therefore, the typical node
module will have the form shown in FIGURE 4 but the
function generating unit generates ¢x in accordance with
Equation 22 instead of Equation 19. In formulating
hyperbolic differential equations, two initial conditions
are specified for each point in space, so that in starting
a computer run, the potentials for the first two time
increments are known. Equation 21 and FIGURE 4
applied to hyperbolic partial differential equations are
therefore self-starting, so that no modification of the
procedure is necessary for the first time increment.

Biharmonic partial differential equations

An example of a nonlinear equation governing the
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8

vibration of beams is Equation 3. Expanding the term
on the left-hand side of this equation yields

g, (D0() (%) 4 (V0 (e)\e_

”(¢)&?+2(T><6§?>+( o Jort
0%

K@) 52+ () (23

which becomes upon rearranging

) -

Equation 24 can be wriiten as

dip . 2 (D CYAVAL
() EE)
L (2ele))(% ke % f(8)_
a(p)\ 09? ox? o(p) OF a(¢)

Each space and time derivative in Equation 25 is now
approximated by a finite difference expression. These
approximations take the form

(24)

(25)

ot 2 3 2
(5:;—2 0= "‘A};(%—%) +Z;4(¢z—¢o) —-ATE;(¢3—¢0)

2 3 2
'—Kx}(m-‘#’o) +.—A_:c_4<¢5_¢°) —‘A—xg(dm——%)

+2—i;4<¢7—¢0>+2—A1;4<¢s—¢0>+2—i-z—4<¢9—¢0)
+§7];:_v_4(¢1°_¢°)

(%3% 0=2—15§(—2¢11+2¢12+¢13—¢14)

(gz_g-; 0=A1a;2(¢n+¢12_2¢0)

28) = e ts—200) (26)

Inserting these expressions into Equation 25 yields
—2(p1—po) +3(Ppa—0) —2(p3—0) —2(Ps—0)
43 (p5—po) —2(Pg—d0) + Y2 (pr—0) +72 (¢s—¢0)

H-Yh (pg—o) +%2 (pr0—0) -+ (dx—¢0) =0 27)

where
¢'x=¢'o+27(1q—55 a%(f))o(—2¢11+2¢12
1 /() + d13— pu) (prz—ur)
o a9
g (TRt (ot ou 20
_Az*k(9)e _ _Aatf(o) _
2o gy BT TH) "5 (0) 0 (28)

As before all nonlinearities and all terms inivolving
time and space increments have been combined in the
term ¢y The node module applying to any mode 0
can then be represented by a junction of 11 resistors as
shown in FIGURE 5, which could remain fixed regard-
less of the type of nonlinearity and the finite difference
increments. A function generating unit must be pro-
vided to accept as inputs the potentials at points 0, 2,
5,11, 12, 13, and 14 in order to generate ¢, in accordance
with Equation 28. This unit is relatively complex, but
it must be remembered that only omne such unit is re-
quired regardless of the number of net points used.

Elliptic partial differential equations

As an example of a nonlinear elliptic partial differen-
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tial equation, consider Equation 4 which may be expanded
as

()22 420(8) 38 .0y g

ozx? 0z O (29)
or
0%, 1 d0(¢)/0¢\? f(¢)=9
oxt "a(s) ¢ \oz/ a(¢) (30)

The first and second space derivatives are approximated

as in Equations 11 and 115 so that the finite difference

approximation of Equation 30 may be written as
(¢1—00) —~2(pa—bo) + (p3—b0) +-(px—¢o) =0 (31)

where

_ 1 O (o) . Az f (o)
¢x—¢o+4y(¢o)<‘—‘b¢ )o(dhz é11)? o (a0)

Note the similarity between Equations 31 and 32 and
Equations 13 and 14 applying to the diffusion equation,
In fact these two equations are identical except that
Equation 14 contains an additional term inversely pro-
portional to Af. The solution procedure for these two
equations is identical. Since time 1is not a variable
in Equation 4, the solution is calculated for only “one
time increment”; that is, the solution is complete once
the iterations for Equation 31 have converged.

An array of analog node modules is employed to solve
the set of difference equations for each step in time.
It is this operation which is most time consuming in pure
digital solutions of linear and especially nonlinear par-
tia] differential equations. On the otber hand, an ana-
log network “relaxes” to the correct solution in a negligi-
ble amount of time. In such an analog sysiem the mag-
nitudes- of the dependent variables (i.e., the potentials
¢) appear as D.C. voltages proportional in magnitude
to the wvariables represented. Accordingly, the initial
conditions for each step in time are applied to the net-
work in the form of D.C. voltages and the solution values
are read out of the network also in the form of voltages.
The modules comprising the analog network are designed
to be very simple and inexpensive, containing only fixed
elements. .

A separate node module is required for each point in
space. The purpose of these modules is to solve Equa-
tion 5 for each step in the time domain. Such modules
may be designed by simulating directly a circuit such
as that of FIGURE 1b—that is, by constructing a junc-
tion of positive and negative resistors, with a voltage
source acting on nede 2 to force the potential at node 0
to the values specified by the initial conditions. An
economy in equipment can be effected by rewriting Equa-
tion 5 to read

—daPe=a191+ a0+ 303 . . . ~Fadis
F(atas-tas . . . Fap+1)éo

where the coefficient a; . . . a;p may in general be posi-
tive or negative numbers. To solve the parabolic Equa-
tion 1, the finite difference approximation Equation 13
is rearranged to read

2pa=0h1+p3+ (Px— o) (34)
Similarly, the finite difference expressions Equations 17
or 21 are rearranged to read
2¢p=g1+d3+ ps— 25+ g+ (dx— o) (35)
The module for the nonlinear biharmonic equation,
Equation 3, is obtained by writing Equation 27 as
3p2=20142¢3+2¢s—3ps+2ps— Vo ¢y
—Vapg—Vapg—Vo 10— (px—pp) (36)

The simplest possible realization for each node module
is obtained by multiplying by —1 both sides of those
of Equations 34, 35 and 36 applying to alternate points
in the x domain. For example, if there are 100 net
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points, labeled 1 through 100, along the x coordinate,
the equations applying to all points with even numbers are
multiplied by —1 while those applying to odd-numbered
points are left unchanged. In that event, the output
potentials of the even-numbered node modules will ac-
tually be the negative of the solution for that point in
time and space. This sign change must of course be
taken into account in printing out the solution. The ad-
vantage of this reformulation is that it permits the solu-
tion of the system of difference equations using but one
operational amplifier at each node. This follows from
the fact that now the output potential ¢y of any node
module is identical to the potentials —¢; and —¢3 of
adjacent modules.

Node modules for the solution of Equations 34, 35
and 36 can therefore take the form shown in FIGURES 64,
6b and 6c respectively. The symbol

N
L
4

designates a D.C. operational amplifier having one input
€y and one input e;, and e;=—Ae; where A is a positive
number greater than 1000. The relative values of the
Tesistors are as indicated and the resistors have voltage
inputs as shown.

In the circuits shown in FIGURES 64, 6b and 6¢ the
input potentials ¢;, ¢s, ¢y, and ¢ are identical with the
potentials ¢, of adjacent node modules. The output ter-
minal ¢; of each module is therefore comnected to the
terminals marked ¢; and ¢; of adjacent node modules.
Similarly potential ‘¢; corresponds to the potentials ¢,
and ¢g of adjacent node modules. ‘These terminals may
therefore be interconnected. The potentials (¢y—g¢q) and
#5 for each node module must be supplied by voltage
sources,

In earlier developments of the Discrete-Space-Discrete-
Time technique as described in the copending patent appli-
cation, resistance potentiometers served as voltage sources.
In order to minimize the necessary function generating
equipment, and in order to utilize the long-time memory
capabilities of the digital computer, it is desirable that
all the node modules time-share a single function gen-
erator and the digital computer memory. Accordingly,
the potentials corresponding to ¢, ¢, &5, ¢g and ¢y are
read directly out of the digital computer or are generated
by the analog function generating unit. These values
appear in sequence (serially) at the output of the digital-
analog converter and are distributed to the appropriate
node modules by means of an input commutator. Thus
the input commutator serves to convert the serial data
from the digital computer into parallel form for use by
the analog network. It then becomes necessary to supply
each node module with a short-time memory to store the
voltage supplied through the input commutator until the
computation cycle (for that time.increment) is complete.
One such memory, commonly termed sample-hold, is re-
quired for each module. These sample-hold circuits can
be of simple conventional design, but must be capable
of holding the applied voltage with negligible error for a
number of seconds. Such a sample-hold circuit is de-
scribed on pages 6-27 of the “Computer Handbook” by
Huskey and Korn.

A typical node module for the solution of parabolic,
hyperbolic and elliptic equations may then take the form
shown in FIGURE 7. Each module 10 has one sample-
hold circuit 12 which is periodically in contact with the
pole of an input commutator 168, and one output ter-
minal which is sampled periodically by the pole of an
output commutator 102. The node module is connected
to adjacent modules in the positive and negative direc-
tions through two connectors each. One of the connec-
tions in each direction serves to apply the output potential
¢ to the adjacent modules; the other connections serve
to bring in the potentials —e; and —g¢3, which are actually
the potentials ¢y of the adjacent modules. Modules adja-
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cent to field boundaries are connected to voltage supplies
generating potentials proportional to the specified bound-
ary conditions.

The input resistors labeled ¢; and ¢g are required to
treat the biharmonic equation. These resistors can also
serve.in the treatment of problems of the type of Equa-
tions 1, 2, and 4 in two space dimensions. In the latter
case these two- resistors are connected to the output ter-
minals of the adjacent nodes in the positive and negative
y directions. For problems in three space dimensions,
two additional resistors are reguired.

It appears, therefore, that a node module including
one amplifier, one sample-hold circuit and six fixed pre-
cision resistors suffices for the solution of parabolic, hyper-
bolic and elliptic problems in two space dimensions, and
for the solution of biharmonic problems in one space
dimension. None of these elements is dependent upon
Ax, At, or the specified nonlinearities.

An additional refinement involves the replacement of
some of the fixed resistors in a few of the node modules
with decades or variable resistors. For example the re-
gistors attached to ¢; and ¢ in FIGURE 7 may be re-
placed by resistance potentiometers. These node modules
can then be employed at the interface of two regions of
the field in which different sizes of the net spacing Ax
are employed. The setting of these variable resistors can
be determined from the coefficients of Equation 5 apply-
ing to the net point under consideration.

The overall computer system can take two alternative
forms. The first form of the system is where the non-

linear terms
1 (aa(cb) , E(do) f{o)

a(éa) \ 04 / o(en) a(do)
etc. are generated within the digital computer. In order
that this be practical, it is necessary that there be avail-
able approximations to the nonlinearities, which are suf-
ficiently simple to permit the digital computer to generate
the nonlinear function ¢, for each net point without an
uneconomic expenditure of computing time. For more
complex nonlinear functions, it may be preferable to use
a second form of the system including an analog function
generating unit.

The first alternative form of the computer system, as
showan in FIGURE 8, is a closed loop of analog and digital
components. The loop consists of the following elements.
A network of node modules 10 of the type shown in
FIGURES 6a, 6b and 6c, one for each point in space.
An output commutator 102 which samples the output
signal (gs) of each node module in turn. The parallel
outputs of the analog network are therefore converted
into serial form. The output commutator 102 may be
a Model DY2911 scanner manufactured by the Dymec
Division of the Hewlett-Packard Co. An analog-digital
converter 104 which translates the analog voltages at
the outputs of each of the node modules into a digital
code compatible with that of the digital computer. The
analog-digital converter 104 may be a Model DY2401A
integrating voltmeter manufactured by the Dymec Divi-
sion of the Hewlett-Packard Co. A digital computer 109,
with a memory capacity at least equal to three times the
number of net points. For this purpose a small computer
such as the IBM 797, Packard-Bell 250 or the Bendix
G15 may be used. A digital-analog converter 108 to
translate the output signals of the digital computer into
analog form. A digital-analog converter as shown in
FIGURE 18.75 and described on page 18.45 of the “Com-
puter Handbook” (Huskey and Korn editors) published
by McGraw-Hill, may be used for this purpose. An input
commutator 100 to distribute the sequentially arriving
analog signals at the output of the digital-analog ccnverter
to the appropriate input terminals of the node modules.
The input commutator 160 may also be a Model DY2911
scanner manufactured by the Dymec Division of the
Hewlett-Packard Co. A control-timer 118 synchronizes
the operation of the various units in the loop 112 to
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insure the proper sequential performance.
records the problem solution.

The digital computer unit 106 is programmed to per-
form four main functions. First, the digital computer
106 serves as a memory for the output potentials ¢, (the
solutions for each computation cycle) and makes these
potentials available as initial conditions (¢g, ¢4, ¢5 and ¢)
in subsequent computation cycles. Second, the digital
computer 106 serves to generate the potentials ¢, in
accordance with Equations 14, 18, 22 or 28. Since ¢y is in
general a function of the unknown potential ¢g, a series
of iterative computer runs through the hybrid loop must
be made for each time increment. Initial values of ¢x
are assumed for each net point and computations are con-
tinned until the potentials ¢, in two successive iterative
cycles fails to show any appreciable change. The digital
computer 106 thirdly serves to test successive values of
¢, for such convergence. Once a specified convergence
criterion has been satisfied, the digital computer emits a
signal which permits progression to the succeeding time
increment.

The principal source of etror, arising in the utilization
of the analog operational umnits employed in each of the
node modules, is amplifier drift or zero-offset. To
obviate the necessity for expensive stabilization and drift-
elimination circuits, a calibration computer run is made
prior to each problem solution. In this calibration run
all initial and boundary conditions are set to zero, so that
the solution values should be zero. In the presence of
drift, the output voltages ¢, Will deviate from zero. Ac-
cordingly, snitable correction potentials are applied at the
input terminals of each node module. These correcting
potentials compensate for the drift such that the desired
zero output conditions result. Itis a fourth function of
the digital computer 106 to store the appropriate correc-
tion potential for each node module and to add this value
to the calculated input term ¢, at each step in the calcu-
lation.

The second alternative form of the computer system
is used when the nonlinear functions to be generated are
relatively complex, or when it is desired to change these
functions frequently. During these situations it may be
preferable to generate the nonlinear potential ¢, using
analog equipment instead of relying upon the digital com-
puter. In that event the hybird computer loop is modi-
fied, as shown in FIGURE 9, by the addition of an ana-
log function generating unit 200 and a function generator
commutator 202. The function generator commutator
may also be a Model DY2911 scanner manufactured by
Dymec Division of Hewett-Packard Co. The function
generating unit 200 receives at its input the necessary po-
tentials ¢g t0 ¢1a. These potentials (which correspond
to the potentials ¢, and ¢5 of various node modules) are
read out of the memory of the digital computer 106 as
required and are converted into analog form by the digital-
analog converter 108.. The commutator 202 is employed
to distribute these potentials to corresponding sample-hold
circuits within the analog function generator unit. The
output of the function generating unit is applied to the
main input commutator, which in turn distributes these
potentials to the appropriate node modules. Thus the
function-generator commutator goes through a complete
cycle each time the input commutator steps from the in-
put terminal of the node module to that of the next node
module.

FIGURE 10 is an example of a function generating
unit 200 for generating the potentials of Equation 18
which correspond to the nonlinear terms of Equations 1
and 2.

The function generating unit normally would contain
one or more biased-diode function generators. In the
example shown in FIGURE 10 three biased-diode genera-
tors 300 are used. These biased-diode function genera-
tors 308 approximate nonlinear functions by a piecewise
linear approximation, usually employing 20 or more line

A printer 112
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ségments. The function generator 200 may use biased-
diode function generators of the type employed in most
commercial analog computers. In addition, the function
generating unit 200 contains a number of analog multi-
pliers 302, sign changers 304, adders 306 and sample-
hold circuits 308 to permit the generation -of ¢y as speci-
fied.

The use of the analog function generating unit 200 has
the advantage that the complexity of the nonlinear func-
tions has no effect upon the overall computing time, since
the function generating unit 200 acts “instantaneously”
regardless of the nature of the specific functions being
generated, On the other hand, the transition from the
hybrid loop of FIGURE 8 to that of FIGURE 9 involves
the transmission from the digital computer 106 to the
function generating unit 200 of a number of additional
data for each point in"space.

The operation of the hybrid computing system as-shown
in FIGURES 8 and 9. for the solution of equations of the
type of Equations 1 through 4 takes the following general
steps:

(1) The 1, 2, or 3 dimensional field under study is
represented by an array of finite difference’ grid" points,
and a mode module is provided for each such point.
These modules are interconnected as described above, and
suitable boundary potentials are applied to those modules
adjacent to a field boundary.

(2) A calibration run is performed to eliminate any
errors due to drift or zero offset in the electronic ampli-
fiers within the node modules. -This run results in the
storage within the digital computer. of a correction po-
tential to be added to the input potential of each node
medule.

(3) The specified nonlinear functions o(o), f(¢), k(¢),
etc., are introduced into the system either by storing them
in the digital computer memory, or by suitable adjust-
ments of the analog function generators.

(4) The time increment At is specified either by intro-
ducing it into the digital computer or by suitable adjust-
ment in the analog function generating unit.

(5) The specified initial conditions for the problem are
fed into the digital computer.

(6) The computing system is now set to operate auto-
matically,. For each time increment a series of sub-cycles
are -performed until convergence of the nonlinear term
¢x is obtained. The solution for that step of the prob-
lem, ¢, for each net point, is then printed out and the
computer automatically steps ahead to the next step in
time.

(7) When a specified number of time steps Az have been.
completed the computer comes to a stop.

FIGURE 11 is a flow chart explaining the operation of
the computer system with reference to the specific digital
computer program. Assume that a hyperbolic equation,
such as Equation 2, is to be solved using N net points
in the space.domain. Identify a typical net point with
the subscript n, each step in the time domain by the sub-
script ¢, and the iterative sub-cycles for each step in time
by the superscript /. Assume further that four sets of N
digital computer memory registers are available. The
first set of memory registers, designated A, serves to store
solution values for time #-4A?¢, (¢s). The second set,
designated By, serves to sfore solution values applying to
time, Zo,(#0). The third set of memory registers, desig-
nated C,, serves to hold solution values for time
to—AL(#5). The fourth set of memory registers, desig-
nated Dy, serves to store the correction potentials which
must be applied at the input of each node module to
compensate for drift and zero-offset in the operational
amplifiers. The digital computer program as shown in
FIGURE 11 is as follows:

Box 1: A subroutine is employed to compute the drift
correction signals for each node module. These are stored
in registers Dy, D, . . . Dy.

Box. 2: Specified initial data is read into the machine.
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Two initial conditions B, and C, are supplied for each
point in the space domain. In addition the time in-
crement A# the number of net points N, the number of
steps in the time domain to be taken T, and an error cri-
terion Epgy, are read into the machine. The last term
Serves: as a convergence criterion for the iterative sub-
cycles.

Box 3: A preliminary estimate is made of the. potentials
at time fp-+-Az, by using the specified initial conditions.
These estimates ‘are placed in memory Tegisters, Al
As.. . Ax.

Box 4: The index ¢ is set to 2Af to indicate that the
solution is to. obtain for the second time increment.

Box'5: The index i counting the number of iterative sub-
cycles is set to zero.

Box 6: The index n counting the number of net points
is set to unity.

Box 7: The potentials required to form the input signal
for each of the node modules are read out of the digital
computer- and into the digital-analog converter. If no
analog function generating unit is available, the nonlinear
potential ¢y is also formed in this step of the calculation.

“Box 8: The n register is examined to see if all net points
have been traversed.

Box 9: If the answer to the question in Box 8 is negative
the next net point, n4-1 it treated.

Box 10: If the answer to the question in Box 8 is affirm-
ative the n register is returned to unity.

Box 11: The output potentials (¢g) of each of the node
modules are read into the corresponding A, registers of
the digital computer in turn.

Box 12: The change in these potentials from the pre- .
ceding iterative sub-cycle is computed: for each point.

Box 13: The square of the change in the solution values
for each point in space is added to the E register.

Box 14: The n register is examined to see if all net
points have been traversed.

Box 15: If the answer to the question in Box 14 is nega-
tive the next net point, n+-1, is treated.

Box 16: If the answer to the question in Box 14 is
affirmative, the content of the E register is examined to
see if the convergence criterion is satisfied.

Box 17: If the answer to the question in Box 16 is nega-
tive the index i is advanced by unity and the steps in Boxes
6 through 16 are repeated,

Box 18: If the answer to the -question in Box 16 ig
affirmative, the solution for that computation cyele is
printed-out. The print out information includes the time,
z; the number of iterative sub-cycles which have been per-

“formed, i, and the solution values AL Ay oL Ax

Box 19: The ¢ register is examined to see if the specified
time domain has been traversed.

Box 20: If the answer to the question in Box 19 is
negative, the time index # is advanced by the time incre-
ment Af; the information in the B registers is transferred
to the C registers; the information in the A registers. is
transferred to the B registers; the E register is set to zero.
Steps 5 through 19 are then repeated.

Box 21: If the answer to the question posed in Box 19
is affirmative, the calculation is complete and the com-
puter comes to a stop.

One of the advantages of the hybrid technique of the
invention over a pure digital computation is that the cal-
culation steps in Boxes 5 through 16 can be accomplished
more rapidly by hybrid methods than by pure digital
methods.

This invention has been described with reference to
particular embodiments but the invention is only to be
limited by the following claims:

I claim:

1. A computer for solving transient field problems; in-
cluding,

a plurality of node modules having input and output

terminals for simulating the characteristics of discrete
points in the field, each of the node moduies includ-
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ing a plurality of interconnected circuit elements and
with the circuit elements of each node module inter-
connected with the circuit elements of other circuit
elements to form an electrical circuit array having
electrical characteristics simulating the characteristics
at discrete field positions of the fleld,

first means operatively coupled to the input terminals
of the plurality of node medules for distributing
analog signals to the node modules representative of
the imitial characteristics of the field at a particular
time, .

second means operatively coupled to the output termi-
nals of the plurality of node modules for sampling
the analog signals appearing at the output terminals
of the plurality of node modules and for producing
output signals in accordance with the sampled signals,

third means operatively coupled to the second means

and responsive to the output signals for producing
digital signals having characteristics in accordance
with the characteristics of the output signals,

fourth means operatively coupled to the third means
and responsive to the digital signals for storing the
digital signals,

fifth means operatively coupled to the fourth means

and to the first means and responsive to the stored
digital signals for producing analog signals having
characteristics in accordance with the digital signals
and for coupling the analog signals to the first means.

2. A computer for solving field equations representing
transient field problems, including

a plurality of node modules having input and output

terminals with individual ones of the plurality of
node modules simulating the characteristics of dis-
crete points in the field,
first means operatively coupled to the input terminals
of the plurality of node modules for distributing sig-
nals to the node modules representative of the initial
characteristics of the field at a particular time,

second means operatively coupled to the output termi-
nals of the plurality of node modules for sampling
signals appearing at the output terminals of the plu-
rality of node modules and for producing output sig-
nals in accordance with the sampled signals,

third digital computer means operatively coupled to the

second means and responsive to the output-signals
produced by the second means for storing the output
signals and for modifying the characteristics of the
stored signals in accordance with the characteristics
of the field equations representing the transient field
problems, and

fourth means operatively coupled to the first and third

means and responsive to the modified signals pro-
duced by the third means for coupling the modified
signals to the first means.

3. The computer as described in claim 2 wherein digital
signals representing initial characteristics of the discrete
points in the field are applied to the digital computer.

4. The computer of claim 2 wherein the digital com-
puter additionally modifies the stored signals to correct
for errors in the computer system. .

5. The computer of claim 2 wherein the first means
include a converter for producing analog signals having
characteristics in accordance with the characteristics of
the modified signal and wherein the second means in-
clude a converter for producing digital signals having
characteristics in accordance with the characteristics of the
signals appearing at the output terminals of the plurality
.of node modules.

6. A computer for solving field equations representing
transient field problems, including .

_ a plurality of node modules having input and output
terminals for simulating the characteristics of discrete
points in the field, each of the node modules includ-
ing a plurality of interconnected circuit elements and
with the circuit elements of each node module inter-
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connected with the circuit elements of other circuit
elements to form an electrical circuit array having
electrical characteristics simulating the characteristics
at discrete field positions of the field,

first means operatively coupled to the input terminals
of the plurality of node modules for distributing sig-
nals to the node modules representative of the initial
characteristics of the field at a particular time,

second means operatively coupled to the output termi-
nals of the plurality of node modules for sampling
signals appearing at the output terminals of the plu-
rality of node modules and for producing output sig-
nals in accordance with the sampled signals,

third digital computer means operatively coupled to the
second means and responsive to the output signals
produced by the second means for storing the output
signals and for modifying the characteristics of the
stored signals in accordance with the characteristics
of the field equations representing the transient field
problems, and .

fourth means operatively coupled to the first and third
means and responsive to the modified signals pro-
duced by the third means for coupling the modified
signals to the first means.

7. A computer for solving transient field problems, in-

cluding,

a plurality of node modules having input and output
terminals with individual ones of -the plurality of
node modules simulating the characteristics of dis-
crete points in the field.

first means operatively coupled to the input terminals
of the plurality of node modules for distributing
signals to the node modules representative of the
initial characteristics of the field at a particular
time,

second means. operatively coupled to the output ter-
minals of the plurality of node modules for sampling
signals appearing at the output terminals of the plu-
rality of node modules and for producing output
signals in accordance with the sampled signals, and

. third means including a digital computer operatively
coupled to the first and second means and respon-
sive to the output signals produced by the second
means, for storing the output signals and for cou-
pling the stored signals to the first means and where-
in digital signals representing the initial character-
istics of the discrete points in the field are applied
to the digital computer.

8. A computer for solving transient field problems, in-

cluding, - '

a plurality of node modules having input and output
terminals with individual ones of the plurality of
node modules simulating the characteristics of dis-
crete points in the field,

first means operatively coupled to the input terminals
of the plurality of node modules for distributing
signals to the.node modules representative of the
initial characteristics of the field at a particular
time, .

second means operatively coupled to the output ter-
minals of the plurality of node modules for sampling
signals appearing at the output terminals of the plu-
rality of node modules and for producing output
signals in accordance with the sampled signals, and

third means including a digital computer operatively
coupled to the first and second means and responsive
to the output signals produced by the second means,
for storing the output signals and for coupling the
stored signals to the first means and wherein the
digital computer modifies the stored signals to cor-
rect for errors in the computer system.

9, A computer for solving transient field problems, in-

cluding, .

a plurality of node modules having input and output

terminals with individual ones of the plurality of
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node modules simulating the characteristics of dis-
crete points in the field by an analog representa-
tion of the field,

first means operatively coupled to the input terminals
of the plurality of node modules for distributing
analog signals to the node modules representative
of the initial characteristics of the field at a particu-
lar time,

second means operatively coupled to the output ter-
minals of the plurality of node modules for sampling
the analog signals appearing at the output terminals
of the plurality of node modules and for producing
output signals in accordance with the sampled sig-
nals,

third means operatively coupled to the second means
and responsive to the output signals for producing
digital signals having characteristics in accordance
with the characteristics of the output signals,

fourth means including a digital computer operatively
coupled to the third means and responsive to the
digital signals for storing the digital signals and
wherein digital signals representing the initial char-
acteristics of the discrete points in the field are ap-
plied to the digital computer, and

fifth means operatively coupled to the fourth means
and to the first means and responsive to the stored
digital signals for producing analog signals having
characteristics in accordance with the digital signals
and for coupling the analog signals to the first means.

10. A computer for solving field equations representing

transient field problems, including,

a plurality of node modules having the input and out-
put terminals with individual ones of the plurality of
node modules simulating the characteristics of dis-
crete points in the field,

first means operatively coupled to the input terminals
of the plurality of node modules for distributing
signals to the node modules representative of the
initial conditions of the field at a particular time,

second means operatively coupled to the output ter-
minals of a plurality of node modules for sampling
signals appearing at the output terminals of the plu-
rality of node modules and for producing output
signals in accordance with the sampled signals,

third means including a digital computer operatively
coupled to the second means and responsive to the
output signals produced by the second means for stor-
ing the output signals and wherein digital signals
representing initial characteristics of the discrete
points in the field are applied to the digital com-
puter, )

fourth means operatively coupled to the third means
and to the first means and responsive to the stored
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signals for modifying the characteristics of the stored
signals in accordance with the characteristics of the
field equations representing the transient field prob-
lems, and

fifth means operatively coupled to the first and fourth
means and responsive to the modified signals pro-
duced by the fourth means for coupling the modified
signals to the first means,

11. A computer for solving field equations representing

transient field problems, including,

a plurality of node modules having the input and out-
put terminals with individual ones of the plurality of
node modules simulating the characteristics of dis-
crete points in the field,

first means operatively coupled to the input terminals
of the plurality of node modules for distributing sig-
nals to the node modules representative of the initial
conditions of the field at a particular time,

second means including a converter operatively cou-
pled to the output terminals of a plurality of node
modules for sampling signals appearing at the out-
put terminals of the plurality of node modules and
for producing digital signals having characteristics
in accordance with the characteristics of signals ap-
pearing at the output terminals of the plurality of
node modules,

third means operatively coupled to the second means
and responsive to the output signals produced by the
second means for storing the output signals,

fourth means operatively coupled to the third means
and to the first means and responsive to the stored
signals for modifying the characteristics of the stored
signals in accordance with the characteristics of the
field equations representing the transient field prob-
lems,

fifth means operatively coupled to the first and fourth
means and responsive to the modified signals pro-
duced by the fourth means for coupling the modi-
fied signals to the first means, and

sixth means operatively coupled between the third and
fourth means for producing digital signals having
characteristics in accordance with the characteristics
of stored signals.
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