
(19) United States
(12) Patent Application Publication (10) pub. NO.: US 200710028145 A1

GERHARD et al. (43) Pub. Date: Feb. 1,2007

(54) RAID-6 MULTIPLE-INPUT, Publication Classification
MULTIPLE-OUTPUT FINITE-FIELD
SUM-OF-PRODUCTS ACCELERATOR (51) Int. C1.

G06F 11/00 (2006.01)
(75) Inventors: Adrian Cuenin GERHARD, (52) U.S. C1. .. 714136

Rochester, MN (US); Daniel Frank
MOERTL, Rochester, MN (US)

(57) ABSTRACT

Correspondence Address:
OPPEDAHL & OLSON LLP
P.O. BOX 4850
FRISCO, CO 80443-4850 (US)

(73) Assignee: ADAPTEC, INC., Milpitas, CA (US)

(21) Appl. No.: 111163,347

(22) Filed: Oct. 15, 2005

Related U.S. Application Data

(63) Continuation of application No. PCTlIB05153252,
filed on Oct. 3, 2005.

(60) Provisional application No. 601595,680, filed on Jul.
27. 2005.

A standalone hardware engine is used on an advanced
function storage adaptor to improve the performance of a
Reed-Solomon-based RAID-6 implementation. The engine
can perform the following operations; generate P and Q
parity for a full stripe write, generate updated P and Q parity
for a partial stripe write, generate updated P and Q parity for
a single write to one drive in a stripe, generate the missing
data for one or two drives. The engine requires all the source
data to be in the advanced function storage adaptor memory
(external DRAM) before it is started, the engine only needs
to be invoked once to complete any of the four above listed
operations, the engine will read the source data only once
and output to memory the full results for any of the listed
four operations. In some prior-art systems, for N inputs,
there would be 6N+2 memory accesses. With this approach,
the same operation would require only N+2 memory
accesses.

250

405

4ni j-1
4U2 d-I DESTINATION Z

SOURCE 3

403 -El
. I

1 1

Patent Application Publication Feb. 1,2007 Sheet 1 of 2 US 200710028145 A1

'Oocl HOST I
200

BUS IPCle, ar PCI, e t c) /
. _ - - - - - - - L----

230 RAID ADAPTOR
1

-1 \

EXTERNAL DRAM I r-L -------------- - -
,250

I
I

I PROCESSOR
FIRMWARE

L---w----

1- - - - - - - - - -------- ----
I

A

3 0 0 4 OSAC) BUS (SAS, SATA, SCSI, etsl

35 1 31 2 31 3 31 4 d
m

FIG. 2 h)
0
0

Feb. 1,2007

RAID-6 MULTIPLE-INPUT, MULTIPLE-OUTPUT
FINITE-FIELD SUM-OF-PRODUCTS

ACCELERATOR

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of US application
number PCTlIB20051053252, filed Oct. 3,2005, designating
the United States, which application is incorporated herein
by reference for all purposes. International application num-
ber PCTlIB20051053252 claims priority from U.S. applica-
tionNo. 601595,680 filed Jul. 27, 2005, which application is
also incorporated herein by reference for all purposes.

BACKGROUND OF THE INVENTION

[0002] There are many flavors or levels of RAID (redun-
dant array of inexpensive disks). RAID 1, for example,
provides two drives, each a mirror of the other. If one drive
fails, the other drive continues to provide good data. In a
two-drive RAID-1 system, loss of one drive gives rise to a
very sensitive situation, in that loss of the other drive would
be catastrophic. Thus when one drive fails it is extremely
important to replace the failed drive as soon as possible.

[0003] RAID 0 separates data into two or more "stripes",
spread out over two or more drives. This permits better
performance in the nature of faster retrieval of data from the
system, but does not provide any redundancy.

[0004] RAID 10 provides both mirroring and striping,
thereby offering improved performance as well as redun-
dancy.

[0005] Other RAID levels have been defined. RAID 5 has
been defined, in which there are N+l drives in total, com-
posed of N data drives (in which data are striped) and a
parity drive. Any time that data are written to the data drives,
this data is XORed and the result is written to the parity
drive. In the event of loss of data from any one of the data
drives, it is a simple computational matter to XOR together
the data from the other N-1 drives, and to XOR this with the
data from the parity drive, and this will provide the missing
data from the drive from which data were lost. Similarly if
the parity drive is lost, its contents can be readily recon-
structed by XORing together the contents of the N data
drives. (In exemplary RAID-5 systems the drives are striped
with the parity information for a given stripe placed on any
of several drives, meaning that strictly speaking no single
drive is confined to carrying parity information, but for
simplicity of description we refer to one of the drives as a
parity drive.) This is one of the most widely employed levels
of RAID in recent times, because it offers the performance
benefits of striping, and because the calculations @OR) are
extremely simple and so can be easily implemented and are
fast calculations. Performance is very good and reconstruc-
tion of a failed drive (e.g. to a hot spare) is fast (because it
requires no computation more complicated than a simple
XOR). For all of its advantages and widespread use, RAID
5 has a potential drawback which is that loss of two drives
is catastrophic. Stated differently, if a second drive were to
fail (in a RAID-5 system) at a time when the failure of a first
drive had not yet been attended to (e.g. by replacement or by
shifting to a hot spare) then the RAID system will not be able
to recover from the loss of the second drive.

[0006] RAID 6 has been defined, in which there are N+2
drives where N of which contain data and the remaining two
drives contain what is called P and Q information. The P and
Q information is the result of applying certain mathematical
functions to the data stored on the N data drives. The
functions are selected so as to bring about a very desirable
result, namely that even in the event of a loss of any two
drives, it will be possible to recover all of the data previously
stored on the two failed drives. (With RAID 6, as with RAID
5, in an exemplary embodiment the redundancy P and Q
information is placed on various of the drives on a per-stripe
basis, so that strictly speaking there is no dedicated P drive
or Q drive; for simplicity of explanation this discussion will
nonetheless speak of P and Q drives.)

[0007] In a Reed-Solomon-based RAID-6 implementa-
tion, an array of N+2 drives on a given stripe will have N
drives containing data for that stripe and 2 drives containing
redundancy data for the stripe (P and Q "parity"). The
redundancy data is not actual parity but is used in the same
fashion as parity is used in a RAID-5 implementation and
thus, in this discussion, the term "parity" will be used in
some instances. This redundancv data is calculated based on
two independent equations which each contain one or both
of the two redundancy data values as terms. Given all of the
data values and using algebra, the two equations can be used
to solve for the two unknown redundancy data values.

[0008] Once each piece of redundancy data can be
described in terms of the data that is available, there remains
the task of actually performing the necessary multiplications
and additions to get a result. In the case of a partial-stripe
write, where all of the new data is not available, the firmware
must first instruct the hardware to read the current data into
memory and then the same process is performed.

[0009] For a single write, based on the two equations
governing the RAID-6 implementation, two new equations
can be derived which solve for the new P and 0 values based .
on the change in the single data drive being update, and the
old P and Q values. Once these equations are derived,
firmware must instruct the hardware to read the old data (and
calculate the difference between the old and new), the old P
and the old Q from the drives into memory. Then, using the
two new equations, this invention can be used to build the
new P and Q.

[0010] For a rebuild, again, equations can be derived to
describe the missing drive or two missing drives based on
the remaining drives. Firmware needs only to instruct the
hardware to read in the data from the remaining drives into
memory and to use this invention to calculate the data for the
missing drives.

[0011] To calculate the results in these equations, each
source data value will need to be multiplied by some
constant and then added to calculate the sum of products for
each result data value. The multiply needed is a special
finite-field multiply defined by the finite field being used in
the RAID-6 implementation. (Finite-field addition is simply
XOR.)

[0012] Performance and redundancy. With many RAID
levels other than RAID 6, then, a chief question is "what are
the chances that two drives would turn out to have failed at
the same time?" A related question is "what are the chances
that after a failure of a first drive, and before that fist drive

Feb. 1,2007

gets replaced, a second drive fails?" The answer to the
questions is on the order of p2, where p is the probability of
failure of one drive during a particular interval.

[0013] With RAID 6, however, a chief question is "what
are the chances that three drives would turn out to have
failed at the same time?" A related question is "what are the
chances that after a failure of a first drive, and before that
first drive gets replaced, a second drive fails, and before
either of the two drives gets replaced, a third drive fails?"
The answer to these questions is on the order of p3.

[0014] Because p is very small, p3 is much smaller than p2.
This is part of why RAID 6 poses less of a risk of
catastrophic data loss as compared with some other RAID
levels.

[0015] In real-life applications, however, it is not enough
that a particular level of RAID (e.g. RAID 6) offers a
desirably low risk of data loss. There is an additional
requirement that the system perform well. In disk drive
systems, one measurement of performance is how long it
takes to write a given amount of data to the disks. Another
measurement is how long it takes to read a given amount of
data from the disks. Yet another measurement is how long it
takes, from the moment that it is desired to retrieve particu-
lar data, until the particular data are retrieved. Yet another
measurement is how long it takes the system to rebuild a
failed drive.

[0016] In RAID 6, calculations must be performed before
data can be stored to the disks. The calculations take some
time, and this can lead to poor performance. Some RAID-6
implementations have been done in software (that is, the
entire process including the calculations is done in software)
but for a commercial product, the complexity of performing
the finite-field multiply in software would cause the perfor-
mance of such an implementation to be terrible.

[0017] In other RAID-6 implementations, a finite-field
multiply accelerator is provided. However, even with this,
there is a read from memory and a store back to memory for
every multiply performed. Then to "sum" the products using
an XOR accelerator, there is another N reads for N sources
and one write. In such a prior RAID-6 implementation, two
multiplies would need to be performed for each source and
two results would need to be computed. So, for N inputs,
there would be 6N+2 memory accesses.

[0018] In a Reed-Solomon-based RAID-6 implementation
using finite-field arithmetic, each byte of multiple large sets
of data must be multiplied by a constant specific to each set
of input data and which set of redundancy data is being
computed. Then after each set of input data has been
multiplied by the appropriate constant, each product is
added together to generate the redundancy data. The finite-
field calculation may be thought of as the evaluation of a
large polynomial where the inputs are integers within a
particular domain and the intermediate results and outputs
are also integers, spanning a range that is the same as the
domain.

[0019] Given this must be done for each set of redundancy
data, this whole process can be quite compute intensive. This
is worsened by the fact that finite-field multiplication is not
done by a standard arithmetic multiply so doing so in a
processor is a fairly compute intensive task in itself. Finite
field addition is simply an XOR operation so (when com-

pared with finite-field multiply) computationally it is no
more dificult than normal addition.

[0020] Even with hardware accelerators to perform the
finite-field multiply, running the multiplies independently
cause two memory accesses for each multiplication per-
formed. To generate parity for a stripe write, with N input
buffers and 2 destinations, this would result in 6N+2
memory accesses.

[0021] In the past, due to questions as to whether the
desired performance could be achieved, RAID-6 was not
really used in industry. Reed-Solomon-based RAID-6 has
been understood for many years but previously it was
thought to not be worth the cost. So, most implementations
were limited to academic exercises and thus simply did all
of the computations in software. RAID 6, implemented with
all calculations in software, performs extremely poorly and
this is one of the reasons why RAID 6 has not been used very
much. Because of this, much attention has been paid in
recent years to try to devise better approaches for imple-
menting RAID 6. Stated differently, there has been a long-
felt need to make RAID 6 work with good performance (a
need that has existed for many years) and that need has not,
until now, been met.

[0022] As mentioned above, one approach used in some
DMA controllers found in RAID-6 capable subsystems is to
provide an accelerator to perform a finite-field multiplication
on a set of data. Most RAID subsystems that have a DMA
controller also have an accelerator to perform an XOR on
two or more sets of data (usually buffered in memory
somewhere within the subsystem) and place the result in a
destination buffer. Using these two features, the finite-field
sum-of-products calculations needed for these various
RAID-6 operations can be performed in much less time and
with much less work by the processor than if all of the work
were done in software.

[0023] It turns out, however, that that solution is still not
optimal. The multiplier reads data from a source buffer,
performs the multiplication, then writes the result out to a
destination buffer. This is often done twice for every input
buffer because two results are often needed and each source
must be multiplied by a two different constants. Also, once
the multiplications have been completed, each product
buffer must be XORed together. In the best case, to XOR all
of the product buffers will require the XOR accelerator to
read the data from the source buffers once and write out the
result to a destination buffer. Again, this often must be done
twice, once for each set of result data generated. While this
approach yields better performance than a system accom-
plished solely in software, it still provides very poor per-
formance as compared with other (non-RAID-6) RAID
systems.

[0024] It will thus be appreciated that there has been and
is a great and long-felt need for a better way to implement
RAID 6. It would be extremely helpful if an approach could
be devised which would provide RAID 6 function with good
performance.

SUMMARY OF THE INVENTION

[0025] As mentioned above, a standalone hardware engine
is used on an advanced function storage adaptor to improve
the performance of a Reed-Solomon-based RAID-6 imple-
mentation. The engine can perform the following opera-
tions:

Feb. 1,2007

[0026] generate P and Q parity for a full stripe write,

[0027] generate updated P and Q parity for a partial stripe
write,

[0028] generate updated P and Q parity for a single write
to one drive in a stripe, and

[0029] generate the missing data for one or two drives.

[0030] The engine requires all the source data to be in the
advanced function storage adaptor memory (external
DRAM) before it is started. The engine only needs to be
invoked once to complete any of the four above listed
operations. The engine will read the source data only once
and output to memory the full results for any of the listed
four operations.

[0031] In some prior-art systems, for N inputs, there
would be 6N+2 memory accesses. With this approach, on the
other hand, the same operation would require only N+2
memory accesses.

DESCRIPTION OF THE DRAWING

[0032] The invention will be described with respect to a
drawing in several figures.

[0033] FIG. 1 shows a hardware accelerator in functional
block diagram form.

[0034] FIG. 2 shows a RAID 6 subsystem employing a
hardware accelerator such as that shown in FIG. 1.

DETAILED DESCRIPTION

[0035] The invention will now be described in some detail
with respect to some of the functions provided.

[0036] Full-stripe write. For a full-stripe write, firmware
(e.g. firmware 240 in FIG. 2) will first instruct the hardware
to DMA (for example via host bus 110) all the new data to
memory (e.g. DRAM 220 in FIG. 2). Then firmware will
invoke this invention only once to generate both the P and
Q parity (which are for example found in buffers 251, 252
in FIG. 2 at the end of the invocation of the invention). Per
this invention hardware will read data only once from
memory (for example via DRAM bus 210 in FIG. 2) and
then write to memory both the new P and Q parity (further
details of this invention's flow are described below). (DASD
means direct access storage device.) Firmware then instructs
hardware to write the stripe data to all the data drives and to
write the P parity and Q parity to those parity drives, for
example via DASD bus 300 in FIG. 2.

[0037] Partial-stripe write. For a partial-stripe write, firm-
ware (e.g. firmware 240 in FIG. 2) will first instruct the
hardware to DMA (for example via host bus 110) all the new
data to memory (e.g. DRAM 220 in FIG. 2). Then firmware
will instruct hardware to read into memory the current data
for the stripe from the drives that are not being updated (for
example via DASD bus 300 in FIG. 2). (The data read is
from the data drives that are not being updated, and the P and
Q drives need not be read.) Then firmware will invoke this
invention only once to generate both the P and Q parity. (The
calculations take place wholly within the RAID adaptor 200
in FIG. 2.) Per this invention hardware will read data only
once from memory and then write to memory both the new
P and Q parity (further details of this invention's flow are
described below). Firmware then instructs hardware to write

the new data to those data drives and to write the new P
parity and Q parity to those parity drives. Importantly, with
both the previously mentioned full strip write and the partial
stripe write just mentioned, the invention minimizes traffic
on the DRAM bus 210 as compared with some prior-art
approaches. The number of memory accesses required to
read the data from memory, and to write back to memory the
P and Q for the stripe, is only N+2.

[0038] Single-drive write. For a single-drive write, firm-
ware will first instruct the hardware to DMA all the new data
to memory. Then firmware will instruct hardware to read the
old data, that will be updated, from the drive to memory.
Then firmware will instruct hardware to read the old P parity
and Q parity from the drives to memory. Then firmware will
invoke this invention once to generate both the P and Q
parity. Per this invention hardware will read old data and
new data data only once from memory and then write to
memory both the new P and Q parity (further details of this
invention's flow are described below). Firmware then
instructs hardware to write the new data to the data drive and
to write the new P parity and Q parity to those parity drives.
Here, as before, the traffic on busses 110 and 300 is
minimized as compared with some prior-art approaches.

[0039] Regenerating the missing data in a stripe. When
one or two drives fail, to regenerate the missing data in a
stripe, firmware 240 will first instruct the hardware to DMA
all good data from the data and parity drives (via DASD bus
300) to memory. Then firmware will invoke this invention
once to generate all the missing datalparity. Per this inven-
tion hardware will read data only once from memory and
then write to memory both missing drives data for this stripe
(further details of this inventions flow are described below).
Firmware then uses this data either to provide it to the
system for a read (via host bus 110) or to write out to a hot
spare drive (via DASD bus 300), or to write out to a
replacement drive (via DASD bus 300).

[0040] It is instructive to describe how the calculations
within the adaptor 200 are performed.

[0041] In this invention, each byte of source data is read
from memory only once. Then, each byte of source data is
multiplied by two different constants (e.g. Ka 405, Kb 406
in FIG. I), one for computing the first set of result data (data
flow 407,409,251) and one for the second (data flow 408,
410, 252). These two constants are simply the coefficients
corresponding to the particular source data term in the two
solution equations. After the source data have been multi-
plied by the two constants (e.g. with multipliers 407, 408),
it is XORed (XOR 409, 410) with, on the first source with
zero, and on all subsequent sources with the accumulated
sum of products (feedback path from 251 to 409 and from
252 to 410). Once each source has been multiplied and
added into the sum of products, the two small internal
buffers 251, 252 are flushed out to memory. The engine
works on slices of the data, for example if the internal
buffers 251 and 252 are 512 bytes in size, then the invention
will read the first 512 bytes from each of the N sources as
described above, then write the first 512 bytes of result from
251 to Destination 1413 and from 252 to Destination 2414.
This process is repeated on the second slice of the sources,
and so on, until all the source data have been processed.

[0042] With this sum-of-products accelerator, each set of
source data is read from memory only once, each result is

Feb. 1,2007

written to memory only once, and there are no other accesses
to memory. This reduces the requirements on memory speed
and increases the subsystem throughput.

[0043] In this accelerator, each source is read from
memory and sent to two multipliers. In FIG. 1, for example,
a particular piece of source data (e.g. stored in source 1,
reference designation 401) is passed at one time to compu-
tational path 407, 409, 251 and simultaneously (or perhaps
at a different time) to computational path 408,410,252. The
multipliers 407,408 then compute the products of the source
data and input constants where the input constants (Ka 405,
Kb 406) are provided by firmware for each source data
(Each source 401.402 etc. has two uniaue constants Ka. Kb. , ,

for example if there are 16 sources then there are 32
constants). The products from the multipliers 407, 408 are
then sent to the two XOR engines 409,410 which XORs the
product with the accumulated products from the previous
sources. The result of the XOR engines goes into two
separate internal buffers 251, 252 which, when all products
have been XORed together, are written out to memory (e.g.
to destinations 413, 414).

[0044] In an exemplary embodiment the first and second
computational paths, including the multipliers 407, 408, the
XORs 409, 410, and the buffers 251, 252 are all within a
single integrated circuit, and the feedback paths from buffers
251,252 back to the XORs 409,410 are all within the single
integrated circuit. In this way the number of memory reads
(from the source memories 401-404 and to the destination
memories 413, 4144) for a given set of calculations is only
N+2.

[0045] It is instructive to compare the workings of the
inventive accelerator with prior-art efforts to provide accel-
erators. With a prior-art attempt at an accelerator, as men-
tioned above, the old approach calls for 2N+2 operations
that firmware must instruct the hardware to perform.

[0046] With one prior-art attempt at an accelerator, there is
a single computational path analogous to the top half of FIG.
1, that is, with a single multiplier, single XOR, etc.

[0047] In contrast, with the inventive approach, each set of
input data is read from the input buffers once, multiplied
internally by two different constants, and the products are
added to the respective results and are then written out to the
result buffers. A particular read is passed to both of the
multipliers 407, 408 so that calculations can be done in
parallel, and so that the read need only be performed once.
With this invention, for N input buffers and 2 destinations
there are N+2 buffer accesses.

[0048] This reduces the number of memory accesses and
only requires firmware to set up the hardware to perform one
operation. In a subsystem with limited bandwidth to
memory, this invention will greatly improve performance.

Hot Spares

[0049] In this discussion we frequently refer to a RAID-6
system where the number of data drives is (for example) N
and thus with P and Q redundancy drives the total number
of drives is N+2. It should be appreciated, however, that in
many RAID-6 systems, the designer may choose to provide
one or more "hot spare" drives. Hot spare drives are pro-
vided in a DASD array so that if one of the working drives
fails, rebuilding of the contents of the failed drive may be

accomplished onto one of the hot spare drives. In this way
the system need not rely upon a human operator to pull out
a failed drive right away and to insert a replacement drive
right away. Instead the system can start using the hot spare
drive right away, and at a later time (in less of a huny) a
human operator can pull the failed drive and replace it. As
a matter of terminolo~v. then. the total number of drives

'22,

physically present in such a system could be more than N+2.
But the discussion herein will typically refer to N data drives
and a total number of drives (including P and Q) as N+2,
without excluding the possibility that one or more hot spare
drives are also present if desired.

EXAMPLE

[0050] A stripe write example where N=2. The invention
will be described in more detail with respect to an example
in which N+2 (the total number of drives) equals 4. It should
be appreciated that the invention is not limited to the
particular case of N=2 and in fact offers its benefits in
RAID-6 systems where N is a much larger number. In
addition it should be appreciated that the invention can offer
its benefits with RAID systems that are at RAID levels other
than RAID 6.

[0051] Turning now to FIG. 2, the RAID Adaptor 200
would DMA data from the Host 100 over the host bus 110
into buffers 221 and 222 in external DRAM 220 on the
RAID Adaptor 200. Buffer 221 is large enough to hold all
the write data going to DASD 311 for this stripe write.
Buffer 222 is large enough to hold all the write data going
to DASD 312 for this stripe write. Buffer 223 will hold the
P for this stripe; this data will go to DASD 313. Buffer 224
will hold the Q for this stripe write; this data will go to
DASD 314. The Processor Firmware 240 instructs the
invention, hardware Accelerator 250, to generate P and Q for
the stripe.

[0052] Importantly, the Accelerator reads a part of Buffer
221 (typically 512 bytes) over the DRAM bus 210, and use
the first two RS (Reed-Solomon) coefficients (Ka, Kb in
FIG. 1) to generate a partial P and Q, storing these inter-
mediate results in the partial internal buffers 251 and 252.
The Accelerator then reads a part of Buffer 222 (again,
typically 512 bytes) over the DRAM bus 210, and use the
next two RS coefficients to generate a partial P and Q storing
these in partial internal buffers 251 and 252. In this example
where N=2, there are two data sources, so the last of the two
data sources will by now have been read and the computa-
tion is complete. The internal buffer 251, which now con-
tains the result of a computation, is written via DRAM bus
210 to external buffer 223. Likewise internal buffer 252 is
written via DRAM bus 210 to external buffer 224. The steps
described in this paragraph are repeated for each remaining
512-byte portion in the input buffers 221, 222 until all
computations for the stripe have been performed.

[0053] Then firmware will instruct hardware to do the
following:

[0054] write data from Buffer 221 over the DRAM bus
210 to the DASD bus 300 and to DASD 311.

[0055] write data from Buffer 222 over the DRAM bus
210 to the DASD bus 300 and to DASD 312.

[0056] write P from Buffer 223 over the DRAM bus 210
to the DASD bus 300 and to DASD 313.

Feb. 1,2007

[0057] write Q from Buffer 224 over the DRAM bus 210
to the DASD bus 300 and to DASD 314.

[0058] These operations are optimally started by firmware
overlapped. (They could be carried out seriatim but it is
optimal that they be overlapped.) The bus 300 is, generally,
a DASD (directly addressed storage device) bus, and in one
implementation the bus 300 could be a SAS (serial attached
SCSI) bus.

[0059] In an exemplary embodiment, the invention is
implemented in an ASIC 230, and the RAID firmware 240
runs on an embedded PPC440 (processor) in that same ASIC
230.

[0060] The same hardware just described is able to read
data andor PIQ from the buffer, to do the RS calculations,
and to write the data andor PIQ back to the buffer in the best
way possible (using a single invocation from firmware).

[0061] It will be appreciated that the moving of data
tolfrom the host and moving datalPlQ tolfrom the drives is
done in a standard RAID-6 fashion and these movements are
only described to show how the invention is used. The
particular type of data bus between the adaptor 200 and the
host 100 is not part of the invention and could be any of
several types of host bus without departing from the inven-
tion. For example it could be a PC1 bus or a PCIe bus, or
fibre channel or Ethernet. The particular type of drives
connected to the adaptor 200, and the particular type of
DASD bus 300 employed, is not part of the invention and
could be any of several types of DASD drive and bus
without departing from the invention. For example the bus
could be SAS, SATA (serial ATA) or SCSI. The type of drive
could be SATA or SCSI for example.

[0062] It is again instructive to compare the system
according to the invention with implementations that have
been tried in past years, all without having achieved satis-
factory performance.

[0063] As one example, the prior RS calculations would
have been done in software, either on a Host processor (e.g.
in host 100 in FIG. 2) or by firmware in an embedded
processor. Those calculations would have been very proces-
sor- and memory-intensive, and such a solution would not
provide bandwidth needed for a successful RAID-6 product.

[0064] A simple RS hardware engine would just read a
buffer, do the RS math and write back to a buffer. In a stripe
write with 16 data drives and two parity drives (eighteen
total drives) that engine would have to be invoked 16 times,
then the resulting 16 buffers would have to be XORed
together to generate the P result. What's more, that engine
would have to be invoked 16 more times and those 16
resulting buffers would then have to be XORed together to
generate the Q result. This is still very memory intensive,
plus firmware is still invoked many times to reinstruct the
hardware.

[0065] Since the same source data is used in both the P and
Q calculation, the system according to the invention calcu-
lates them simultaneously, that way the source data is read
from the buffer only once. The system according to the
invention keeps a table of all the RS coefficients, 32 in the
case of a 16-drive system, so that firmware does not have to
reinstruct the hardware. And the system according to the
invention keeps all the partial products stored internally so

that only the final result is written back to the buffer. This
generates a minimum number of external buffer accesses,
resulting in a maximum performance.

[0066] It will be appreciated that one apparatus that has
been described is an apparatus which performs one or more
sum-of-products calculations given multiple sources, each
with one or more corresponding coefficients, and one or
more destinations. With this apparatus, each source is only
read once, each destination is only written once, and no other
reads or writes are required. With this apparatus, when
applied to the particular case of Reed-Solomon codes for
RAID 6, the sum-of-products is computed using finite-field
arithmetic. The apparatus is implemented as a hardware
accelerator which will perform all of the calculations nec-
essary to compute the result of two sum-of-products calcu-
lations as a single operation without software intervention.
The RAID subsystem can have hardware capable of gener-
ating data for multiple sum-of-products results given a set of
input data and multiple destinations. In one embodiment, the
system is one in which the data for the data drives is read
from the subsystem memory only once, the redundancy data
(P and Q information) is written into subsystem memory
only once, and no other memory accesses are part of the
operation. Desirably, in this system, the sum-of-products is
computed entirely by hardware and appears as a single
operation to software.

[0067] In one application, the inputs to the sum-of-prod-
ucts calculation are the change in data for one drive and two
or more sets of redundancy data from the redundancy drives
and the results are the new sets of redundancy data for the
redundancy drives.

[0068] In another application, the inputs to the sum-of-
products calculations are the sets of data from all of the
available drives and the results are the recreated or rebuilt
sets of data for the failed or unavailable drives.

[0069] It should be noted that while in the examples in this
invention disclosure refer to two sets of result data or
destinations for the two sum of products results, the scope of
the invention is meant to cover two destinations or more than
two destinations. For instance, if rather than a RAID-6
implementation, a RAID implementation which supported
three or more sets of redundancy data and three or more disk
failures could also use this accelerator. In such a case, in
addition to the two computational paths 407, 409, 251 and
408, 410, 252, there would be at least one additional
computational path running in parallel with its own source
of constants provided to a multiplier, its own path to an
XOR, and its own buffer with feedback for finite-field
polynomial calculations.

[0070] Discussion in greater detail. It is instructive to
describe the various methods and apparatus according to the
invention yet again, in rather more detail.

[0071] One method, for a full stripe write, is for use with
an adaptor 200, and a host 100 running an operating system
communicatively coupled by a first communications means
110 with the adaptor 200, and an array of N+2 direct access
storage devices 311-314, N being at least one, the array
communicatively coupled with the adaptor 200 by a second
communications means 300, the adaptor 200 not running the
same operating system as the host 100, the method com-
prising the steps of

Feb. 1,2007

[0072] reading first through Nth source data from the host
to respective first through Nth source memories (401-404
in FIG. 1; 221-224 in FIG. 2) in the adaptor 200 by the
first communications means 110;

[0073] performing two sum-of-products calculations
entirely within the adaptor 200, each calculation being a
function of each of the first through Nth source data, each
of the two calculations each further being a function of N
respective predetermined coefficients (405-406 in FIG. I),
each of the two calculations yielding a respective first and
second result (accumulated in buffers 251, 252), the
calculations each nerformed without the use of the first
communications means and each performed without the
use of the second communications means;

[0074] the calculations requiring only N+2 memory
accesses;

[0075] writing the first through Nth source data to first
through Nth direct access storage devices by the second
communications means, and

[0076] writing the results of the two calculations to ~ + 1 "
and ~ + 2 " direct access storage devices by the second
communications means.

[0077] Another method involving a single-drive write
drawing upon existing P and Q information, involves read-
ing first source data from the host to a first source memory
in the adaptor by the first communications means; reading at
least second and third source data from resvective at least
two direct access storage devices by the second communi-
cations means; performing two sum-of-products calcula-
tions entirely within the adaptor, each calculation being a
function of the first source data and of the at least second and
third source data. each of the two calculations each further
being a function of at least three respective predetermined
coefficients, each of the two calculations yielding a respec-
tive first and second result, the calculations each performed
without the use of the first communications means and each
verformed without the use of the second communications
means; the calculations requiring only N+2 memory
accesses; writing the first source data to a respective first
direct access storage device by the second communications
means, and writing the results of the two calculations to
second and third direct access storage devices (receiving P
and Q redundancy information) by the second communica-
tions means.

[0078] Yet another method involving a single-drive write
drawing upon all of the other data drives and not drawing up
on existing P and Q information, comprises the steps of:
reading first source data from the host to a first source
memory in the adaptor by the first communications means;
reading second through Nth source data from respective at
least N-1 direct access storage devices by the second
communications means; performing two sum-of-products
calculations entirely within the adaptor, each calculation
being a function of the first source data and of the second
through Nth source data, each of the two calculations each
further being a function of at least N respective predeter-
mined coefficients, each of the two calculations yielding a
respective first and second result, the calculations each
performed without the use of the first communications
means and each performed without the use of the second

memory accesses; writing the first source data to a respec-
tive first direct access storage device by the second com-
munications means, and writing the results of the two
calculations to N + I ~ ~ a n d ~ + 2 " direct access storage devices
by the second communications means.

[0079] A method for a partial stripe write comprises the
steps of: reading first through M" source data from the host
to respective first through Mth source memories in the
adaptor by the first communications means; reading M+1"
through Nth source data from respective at least N-M direct
access storage devices by the second communications
means; performing two sum-of-products calculations
entirely within the adaptor, each calculation being a function
of the first source data and of the second through Nth source
data, each of the two calculations each further being a
function of at least N respective predetermined coefficients,
each of the two calculations yielding a respective first and
second result, the calculations each performed without the
use of the first communications means and each performed
without the use of the second communications means; the
calculations requiring only N+2 memory accesses; writing
the first through Mth source data to respective first through

direct access storage devices by the second communi-
cations means, and writing the results of the two calculations
to ~ + 1 " and ~ + 2 " direct access storage devices by the
second communications means.

[0080] A method for recovery of data upon loss of two
drives comprises the steps of: reading third through ~ + 2 "
source data from respective at least N direct access storage
devices by the second communications means; and perform-
ing two sum-of-products calculations entirely within the
adaptor, each calculation being a function of the third
through ~ + 2 " source data, each of the two calculations each
further being a function of at least N respective predeter-
mined coefficients, each of the two calculations yielding a
respective first and second result, the calculations each
performed without the use of the first communications
means and each performed without the use of the second
communications means; the calculations requiring only N+2
memory accesses.

[0081] An exemplary adaptor apparatus comprises: a first
interface disposed for communication with a host computer;
a second interface disposed for communication with an array
of direct access storage devices; N input buffers within the
adaptor apparatus where N is at least one; a first sum-of-
products engine within the adaptor and responsive to inputs
from the N input buffers and responsive to constants and
having a first output; a second sum-of-products engine
within the adaptor and responsive to inputs from the N input
buffers and responsive to constants and having a second
output; each of the first and second sum-of-products engines
performing finite-field multiplication and finite-field addi-
tion; storage means within the adaptor storing at least first,
second, third and fourth constants; a control means within
the adaptor; the control means disposed, in response to a first
single command, to transfer new data from the host into the
N input buffers, to perform a first sum-of-products calcula-
tion within the first sum-of-products engine using first
constants from the storage means yielding the first output, to
perform a second sum-of-products calculation within the
second sum-of-products engine using second constants from
the storage means yielding the second output, the first and

communications means; the calculations requiring only N+2 second sum-of-products calculations performed without the

Feb. 1,2007

use of the first interface, the first and second sum-of-
products calculations performed without the use of the
second interface, thereafter to transfer the new data via the
second interface to direct access storage devices and to
transfer the first and second outputs via the second interface
to direct access storage devices; the control means disposed,
in response to a second single command, to transfer data
from N-2 of the direct access storage devices into the N
input buffers, to perform a third sum-of-products calculation
within the first sum-of-products engine using third constants
from the storage means yielding the first output, to perform
a fourth sum-of-products calculation within the second
sum-of-products engine using fourth constants from the
storage means yielding the second output, the third and
fourth sum-of-products calculations performed without the
use of the first interface, the third and fourth sum-of-
products calculations performed without the use of the
second interface, thereafter to transfer the first and second
outputs via the second interface to direct access storage
devices or to transfer the first and second outputs via the first
interface to the host.

[0082] The apparatus may further comprise a third sum-
of-products engine within the adaptor and responsive to
inputs from the N input buffers and responsive to constants
and having a third output; the third sum-of-products engine
performing finite-field multiplication and finite-field addi-
tion.

[0083] In this apparatus, the calculations of the first and
second sum-of-products engines together with the constants
may comprise calculation of Reed-Solomon redundancy
data. In this apparatus, the first sum-of-products engine and
the second sum-of-products engine may operate in parallel.
In this apparatus, the first sum-of-products engine and the
second sum-of-products engine may lie within a single
application-specific integrated circuit, in which case the first
single command and the second single command may be
received from outside the application-specific integrated
circuit. In this apparatus, it is desirable that the first sum-
of-products engine receives its input from a memory read,
and that the second sum-of-products engine receives its
input from the same memory read.

[0084] It will be appreciated that those skilled in the art
will have no difficulty at all in devising myriad obvious
improvements and variants of the embodiments disclosed
here, all of which are intended to be embraced by the claims
which follow.

What is claimed is:
1. A method for use with an adaptor, and a host running

an operating system communicatively coupled by a first
communications means with the adaptor, and an array of
N+2 direct access storage devices, N being at least one, the
array communicatively coupled with the adaptor by a second
communications means, the adaptor not running the same
operating system as the host, the method comprising the
steps of

reading first through Nth source data from the host to
respective first through Nth source memories in the
adaptor by the first communications means;

performing two sum-of-products calculations entirely
within the adaptor, each calculation being a function of
each of the first through Nth source data, each of the two

calculations each further being a function of N respec-
tive predetermined coefficients, each of the two calcu-
lations yielding a respective first and second result, the
calculations each performed without the use of the first
communications means and each performed without
the use of the second communications means;

the calculations requiring only N+2 memory accesses;

writ$g the first through Nth source data to first through
N direct access storage devices by the second com-
munications means, and

writingththe results of the two calculations to ~ + 1 " and
N+2 direct access storage devices by the second com-
munications means.

2. The method of claim 1 wherein each of the sum-of-
products calculations is performed using finite-field arith-
metic.

3. A method for use with an adaptor, and a host running
an operating system communicatively coupled by a first
communications means with the adaptor, and an array of
N+2 direct access storage devices, N being at least one, the
array communicatively coupled with the adaptor by a second
communications means, the adaptor not running the same
operating system as the host, the method comprising the
steps of

reading first source data from the host to a first source
memory in the adaptor by the first communications
means;

reading at least second and third source data from respec-
tive at least two direct access storage devices by the
second communications means;

performing two sum-of-products calculations entirely
within the adaptor, each calculation being a function of
the first source data and of the at least second and third
source data, each of the two calculations each further
being a function of at least three respective predeter-
mined coefficients, each of the two calculations yield-
ing a respective first and second result, the calculations
each performed without the use of the first communi-
cations means and each performed without the use of
the second communications means;

the calculations requiring only N+2 memory accesses;

writing the first source data to a respective first direct
access storage device by the second communications
means, and

writing the results of the two calculations to second and
third direct access storage devices by the second com-
munications means.

4. The method of claim 3 wherein each of the sum-of-
products calculations is performed using finite-field arith-
metic.

5. A method for use with an adaptor, and a host running
an operating system communicatively coupled by a first
communications means with the adaptor, and an array of
N+2 direct access storage devices, N being at least one, the
array communicatively coupled with the adaptor by a second
communications means, the adaptor not running the same
operating system as the host, the method comprising the
steps of

Feb. 1,2007

reading first source data from the host to a first source
memory in the adaptor by the first communications
means;

reading second through Nth source data from respective at
least N-1 direct access storage devices by the second
communications means;

performing two sum-of-products calculations entirely
within the adaptor, each calculation being a function of
the first source data and of the second through Nth
source data, each of the two calculations each further
being a function of at least N respective predetermined
coefficients, each of the two calculations yielding a
respective first and second result, the calculations each
performed without the use of the first communications
means and each performed without the use of the
second communications means;

the calculations requiring only N+2 memory accesses;

writing the first source data to a respective first direct
access storage device by the second communications
means, and

writingththe results of the two calculations to ~ + 1 " and
N+2 direct access storage devices by the second com-
munications means.

6. The method of claim 4 wherein each of the sum-of-
products calculations is performed using finite-field arith-
metic.

7. A method for use with an adaptor, and a host running
an operating system communicatively coupled by a first
communications means with the adaptor, and an array of
N+2 direct access storage devices, N being at least one, the
array communicatively coupled with the adaptor by a second
communications means, the adaptor not running the same
operating system as the host, the method comprising the
steps of:

reading first through source data from the host to
respective first through Mth source memories in the
adaptor by the first communications means;

reading M+1" through Nth source data from respective at
least N-M direct access storage devices by the second
communications means;

performing two sum-of-products calculations entirely
within the adaptor, each calculation being a function of
the first source data and of the second through Nth
source data, each of the two calculations each further
being a function of at least N respective predetermined
coefficients, each of the two calculations yielding a
respective first and second result, the calculations each
performed without the use of the first communications
means and each performed without the use of the
second communications means;

the calculations requiring only N+2 memory accesses;

writing the first through M" source data to respective first
through bIth direct access storage devices by the second
communications means, and

writinqhthe results of the two calculations to ~ + 1 " and
N+2 direct access storage devices by the second com-
munications means.

8. The method of claim 7 wherein each of the sum-of-
products calculations is performed using finite-field arith-
metic.

9. A method for use with an adaptor, and a host running
an operating system communicatively coupled by a first
communications means with the adaptor, and an array of
N+2 direct access storage devices, N being at least one, the
array communicatively coupled with the adaptor by a second
communications means, the adaptor not running the same
operating system as the host, the method comprising the
steps of:

reading third through ~ + 2 " source data from respective at
least N direct access storage devices by the second
communications means; and

performing two sum-of-products calculations entirely
within the adaptor, each calculation being a function of
the third through Nth source data, each of the two
calculations each further being a function of at least N
respective predetermined coefficients, each of the two
calculations yielding a respective first and second
result, the calculations each performed without the use
of the first communications means and each performed
without the use of the second communications means;

the calculations requiring only N+2 memory accesses.
10. The method of claim 9 further comprising the step of:

writing the results of the two calculations to replacements
of the first and second direct access storage devices by
the second communications means.

11. The method of claim 9 further comprising the step of:

writing the results of the two calculations to respective hot
spare direct access storage devices by the second
communications means.

12. The method of claim 9 further comprising the step of:

writing the results of the two calculations to the host by
the first communications means.

13. The method of claim 10 wherein each of the sum-of-
products calculations is performed using finite-field arith-
metic.

14. The method of claim 11 wherein each of the sum-of-
products calculations is performed using finite-field arith-
metic.

15. The method of claim 12 wherein each of the sum-of-
products calculations is performed using finite-field arith-
metic.

16. Adaptor apparatus for use with a host computer and an
array of direct access storage devices, the adaptor apparatus
comprising:

a first interface disposed for communication with a host
computer;

a second interface disposed for communication with an
array of direct access storage devices;

N input buffers within the adaptor apparatus where N is at
least one;

a first sum-of-products engine within the adaptor and
responsive to inputs from the N input buffers and
responsive to constants and having a first output;

a second sum-of-products engine within the adaptor and
responsive to inputs from the N input buffers and
responsive to constants and having a second output;

Feb. 1,2007

each of the first and second sum-of-products engines
performing finite-field multiplication and finite-field
addition;

storage means within the adaptor storing at least first,
second, third and fourth constants;

a control means within the adaptor;

the control means disposed, in response to a first single
command, to transfer new data from the host into the N
input buffers, to perform a first sum-of-products calcu-
lation within the first sum-of-products engine using
first constants from the storage means yielding the first
output, to perform a second sum-of-products calcula-
tion within the second sum-of-products engine using
second constants from the storage means yielding the
second output, the first and second sum-of-products
calculations performed without the use of the first
interface, the first and second sum-of-products calcu-
lations performed without the use of the second inter-
face, thereafter to transfer the new data via the second
interface to direct access storage devices and to transfer
the first and second outputs via the second interface to
direct access storage devices;

the control means disposed, in response to a second single
command, to transfer data from N of the direct access
storage devices into the N input buffers, to perform a
third sum-of-products calculation within the first sum-
of-products engine using third constants from the stor-
age means yielding the first output, to perform a fourth
sum-of-products calculation within the second sum-of-
products engine using fourth constants from the storage
means yielding the second output, the third and fourth
sum-of-products calculations performed without the
use of the first interface, the third and fourth sum-of-
products calculations performed without the use of the
second interface, thereafter to transfer the first and
second outputs via the second interface to direct access
storage devices or to transfer the first and second
outputs via the first interface to the host.

17. The apparatus of claim 16 wherein N is at least six.
18. The apparatus of claim 17 wherein N is at least

sixteen.
19. The apparatus of claim 16 further comprising:

a third sum-of-products engine within the adaptor and
responsive to inputs from the N input buffers and
responsive to constants and having a third output;

the third sum-of-products engine performing finite-field
multiplication and finite-field addition.

20. The apparatus of claim 16 wherein calculations of the
first and second sum-of-products engines together with the
constants comprises calculation of Reed-Solomon redun-
dancy data.

21. The apparatus of claim 16 wherein the first sum-of-
products engine and the second sum-of-products engine
operate in parallel.

22. The apparatus of claim 16 wherein the first sum-of-
products engine and the second sum-of-products engine are
within a single application-specific integrated circuit.

23. The apparatus of claim 22 wherein the first single
command and the second single command are received from
outside the application-specific integrated circuit.

24. The apparatus of claim 16 wherein the first sum-of-
products engine receives its input from a memory read, and
wherein the second sum-of-products engine receives its
input from the same memory read.

25. A method for use with a storage adapter, the method
comprising the steps of

reading N inputs from memory, N being at least one, and
for each of the N inputs read from memory:

performing a part of a first redundancy calculation with
respect to the each of the N inputs read from memory,
the part of the first redundancy calculation comprising
performing a finite-field multiply with respect to a
respective constant, and XORing the finite-field prod-
uct with any previous part of the first redundancy
calculation;

performing a part of a second redundancy calculation with
respect to the each of the N inputs read from memory,
the part of the second redundancy calculation compris-
ing performing a finite-field multiply with respect to a
respective constant, and XORing the finite-field prod-
uct with any previous part of the second redundancy
calculation;

repeating the reading step, the performing-a-part-of-a-
first-redundancy-calculation step, and the performing-
a-part-of-a-second-redundancy-calculation step, until
all of the N reads have been done and the first and
second redundancy calculations have been completed;
and

writing a result of the first redundancy calculation to
memory;

writing a result of the second redundancy calculation to
memory;

whereby the total number of memory reads and writes is
only N+2.

26. A method for use with a storage adapter, the method
comprising the steps of

reading N inputs from memory, N being at least one, and
for each of the N inputs read from memory:

performing a part of a first redundancy calculation with
respect to the each of the N inputs read from memory,
the part of the first redundancy calculation comprising
performing a finite-field multiply with respect to a
respective constant, and XORing the finite-field prod-
uct with any previous part of the first redundancy
calculation;

performing a part of a second redundancy calculation with
respect to the each of the N inputs read from memory,
the part of the second redundancy calculation compris-
ing performing a finite-field multiply with respect to a
respective constant, and XORing the finite-field prod-
uct with any previous part of the second redundancy
calculation;

repeating the reading step, the performing-a-part-of-a-
first-redundancy-calculation step, and the performing-
a-part-of-a-second-redundancy-calculation step, until
all of the N reads have been done and the first and
second redundancy calculations have been completed;
and

Feb. 1,2007

writing a result of the first redundancy calculation to
memory;

writing a result of the second redundancy calculation to
memory;

the first and second redundancy calculations performed in
parallel.

27. A method for use with a storage adapter, the method
comprising the steps of:

reading N inputs from memory, N being at least one, and
for each of the N inputs read from memory:

performing a part of a first redundancy calculation with
respect to the each of the N inputs read from memory,
the part of the first redundancy calculation comprising
performing a finite-field multiply with respect to a
respective constant, and XORing the finite-field prod-
uct with any previous part of the first redundancy
calculation;

performing a part of a second redundancy calculation with
respect to the each of the N inputs read from memory,
the part of the second redundancy calculation compris-
ing performing a finite-field multiply with respect to a
respective constant, and XORing the finite-field prod-
uct with any previous part of the second redundancy
calculation;

repeating the reading step, the performing-a-part-of-a-
first-redundancy-calculation step, and the performing-
a-part-of-a-second-redundancy-calculation step, until
all of the N reads have been done and the first and
second redundancy calculations have been completed;
and

writing a result of the first redundancy calculation to
memory;

writing a result of the second redundancy calculation to
memory;

wherein the finite-field multiplications of the first redun-
dancy calculation, the XORing of the first redundancy
calculation, and storage of partial results of the first
redundancy calculation, and the the finite-field multi-
plications of the first redundancy calculation, the XOR-
ing of the first redundancy calculation, and storage of
partial results of the first redundancy calculation, are all
performed within a single application-specific inte-
grated circuit.

	Front Page
	Drawings
	Specifications
	Claims

