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A standalone hardware engine is used on an advanced 
function storage adaptor to improve the performance of a 
Reed-Solomon-based RAID-6 implementation. The engine 
can perform the following operations; generate P and Q 
parity for a full stripe write, generate updated P and Q parity 
for a partial stripe write, generate updated P and Q parity for 
a single write to one drive in a stripe, generate the missing 
data for one or two drives. The engine requires all the source 
data to be in the advanced function storage adaptor memory 
(external DRAM) before it is started, the engine only needs 
to be invoked once to complete any of the four above listed 
operations, the engine will read the source data only once 
and output to memory the full results for any of the listed 
four operations. In some prior-art systems, for N inputs, 
there would be 6N+2 memory accesses. With this approach, 
the same operation would require only N+2 memory 
accesses. 
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RAID-6 MULTIPLE-INPUT, MULTIPLE-OUTPUT 
FINITE-FIELD SUM-OF-PRODUCTS 

ACCELERATOR 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

[0001] This application is a continuation of US application 
number PCTlIB20051053252, filed Oct. 3,2005, designating 
the United States, which application is incorporated herein 
by reference for all purposes. International application num- 
ber PCTlIB20051053252 claims priority from U.S. applica- 
tionNo. 601595,680 filed Jul. 27, 2005, which application is 
also incorporated herein by reference for all purposes. 

BACKGROUND OF THE INVENTION 

[0002] There are many flavors or levels of RAID (redun- 
dant array of inexpensive disks). RAID 1, for example, 
provides two drives, each a mirror of the other. If one drive 
fails, the other drive continues to provide good data. In a 
two-drive RAID-1 system, loss of one drive gives rise to a 
very sensitive situation, in that loss of the other drive would 
be catastrophic. Thus when one drive fails it is extremely 
important to replace the failed drive as soon as possible. 

[0003] RAID 0 separates data into two or more "stripes", 
spread out over two or more drives. This permits better 
performance in the nature of faster retrieval of data from the 
system, but does not provide any redundancy. 

[0004] RAID 10 provides both mirroring and striping, 
thereby offering improved performance as well as redun- 
dancy. 

[0005] Other RAID levels have been defined. RAID 5 has 
been defined, in which there are N+l drives in total, com- 
posed of N data drives (in which data are striped) and a 
parity drive. Any time that data are written to the data drives, 
this data is XORed and the result is written to the parity 
drive. In the event of loss of data from any one of the data 
drives, it is a simple computational matter to XOR together 
the data from the other N-1 drives, and to XOR this with the 
data from the parity drive, and this will provide the missing 
data from the drive from which data were lost. Similarly if 
the parity drive is lost, its contents can be readily recon- 
structed by XORing together the contents of the N data 
drives. (In exemplary RAID-5 systems the drives are striped 
with the parity information for a given stripe placed on any 
of several drives, meaning that strictly speaking no single 
drive is confined to carrying parity information, but for 
simplicity of description we refer to one of the drives as a 
parity drive.) This is one of the most widely employed levels 
of RAID in recent times, because it offers the performance 
benefits of striping, and because the calculations @OR) are 
extremely simple and so can be easily implemented and are 
fast calculations. Performance is very good and reconstruc- 
tion of a failed drive (e.g. to a hot spare) is fast (because it 
requires no computation more complicated than a simple 
XOR). For all of its advantages and widespread use, RAID 
5 has a potential drawback which is that loss of two drives 
is catastrophic. Stated differently, if a second drive were to 
fail (in a RAID-5 system) at a time when the failure of a first 
drive had not yet been attended to (e.g. by replacement or by 
shifting to a hot spare) then the RAID system will not be able 
to recover from the loss of the second drive. 

[0006] RAID 6 has been defined, in which there are N+2 
drives where N of which contain data and the remaining two 
drives contain what is called P and Q information. The P and 
Q information is the result of applying certain mathematical 
functions to the data stored on the N data drives. The 
functions are selected so as to bring about a very desirable 
result, namely that even in the event of a loss of any two 
drives, it will be possible to recover all of the data previously 
stored on the two failed drives. (With RAID 6, as with RAID 
5, in an exemplary embodiment the redundancy P and Q 
information is placed on various of the drives on a per-stripe 
basis, so that strictly speaking there is no dedicated P drive 
or Q drive; for simplicity of explanation this discussion will 
nonetheless speak of P and Q drives.) 

[0007] In a Reed-Solomon-based RAID-6 implementa- 
tion, an array of N+2 drives on a given stripe will have N 
drives containing data for that stripe and 2 drives containing 
redundancy data for the stripe (P and Q "parity"). The 
redundancy data is not actual parity but is used in the same 
fashion as parity is used in a RAID-5 implementation and 
thus, in this discussion, the term "parity" will be used in 
some instances. This redundancv data is calculated based on 
two independent equations which each contain one or both 
of the two redundancy data values as terms. Given all of the 
data values and using algebra, the two equations can be used 
to solve for the two unknown redundancy data values. 

[0008] Once each piece of redundancy data can be 
described in terms of the data that is available, there remains 
the task of actually performing the necessary multiplications 
and additions to get a result. In the case of a partial-stripe 
write, where all of the new data is not available, the firmware 
must first instruct the hardware to read the current data into 
memory and then the same process is performed. 

[0009] For a single write, based on the two equations 
governing the RAID-6 implementation, two new equations 
can be derived which solve for the new P and 0 values based . 
on the change in the single data drive being update, and the 
old P and Q values. Once these equations are derived, 
firmware must instruct the hardware to read the old data (and 
calculate the difference between the old and new), the old P 
and the old Q from the drives into memory. Then, using the 
two new equations, this invention can be used to build the 
new P and Q. 

[0010] For a rebuild, again, equations can be derived to 
describe the missing drive or two missing drives based on 
the remaining drives. Firmware needs only to instruct the 
hardware to read in the data from the remaining drives into 
memory and to use this invention to calculate the data for the 
missing drives. 

[0011] To calculate the results in these equations, each 
source data value will need to be multiplied by some 
constant and then added to calculate the sum of products for 
each result data value. The multiply needed is a special 
finite-field multiply defined by the finite field being used in 
the RAID-6 implementation. (Finite-field addition is simply 
XOR.) 

[0012] Performance and redundancy. With many RAID 
levels other than RAID 6, then, a chief question is "what are 
the chances that two drives would turn out to have failed at 
the same time?" A related question is "what are the chances 
that after a failure of a first drive, and before that fist drive 
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gets replaced, a second drive fails?" The answer to the 
questions is on the order of p2, where p is the probability of 
failure of one drive during a particular interval. 

[0013] With RAID 6, however, a chief question is "what 
are the chances that three drives would turn out to have 
failed at the same time?" A related question is "what are the 
chances that after a failure of a first drive, and before that 
first drive gets replaced, a second drive fails, and before 
either of the two drives gets replaced, a third drive fails?" 
The answer to these questions is on the order of p3. 

[0014] Because p is very small, p3 is much smaller than p2. 
This is part of why RAID 6 poses less of a risk of 
catastrophic data loss as compared with some other RAID 
levels. 

[0015] In real-life applications, however, it is not enough 
that a particular level of RAID (e.g. RAID 6) offers a 
desirably low risk of data loss. There is an additional 
requirement that the system perform well. In disk drive 
systems, one measurement of performance is how long it 
takes to write a given amount of data to the disks. Another 
measurement is how long it takes to read a given amount of 
data from the disks. Yet another measurement is how long it 
takes, from the moment that it is desired to retrieve particu- 
lar data, until the particular data are retrieved. Yet another 
measurement is how long it takes the system to rebuild a 
failed drive. 

[0016] In RAID 6, calculations must be performed before 
data can be stored to the disks. The calculations take some 
time, and this can lead to poor performance. Some RAID-6 
implementations have been done in software (that is, the 
entire process including the calculations is done in software) 
but for a commercial product, the complexity of performing 
the finite-field multiply in software would cause the perfor- 
mance of such an implementation to be terrible. 

[0017] In other RAID-6 implementations, a finite-field 
multiply accelerator is provided. However, even with this, 
there is a read from memory and a store back to memory for 
every multiply performed. Then to "sum" the products using 
an XOR accelerator, there is another N reads for N sources 
and one write. In such a prior RAID-6 implementation, two 
multiplies would need to be performed for each source and 
two results would need to be computed. So, for N inputs, 
there would be 6N+2 memory accesses. 

[0018] In a Reed-Solomon-based RAID-6 implementation 
using finite-field arithmetic, each byte of multiple large sets 
of data must be multiplied by a constant specific to each set 
of input data and which set of redundancy data is being 
computed. Then after each set of input data has been 
multiplied by the appropriate constant, each product is 
added together to generate the redundancy data. The finite- 
field calculation may be thought of as the evaluation of a 
large polynomial where the inputs are integers within a 
particular domain and the intermediate results and outputs 
are also integers, spanning a range that is the same as the 
domain. 

[0019] Given this must be done for each set of redundancy 
data, this whole process can be quite compute intensive. This 
is worsened by the fact that finite-field multiplication is not 
done by a standard arithmetic multiply so doing so in a 
processor is a fairly compute intensive task in itself. Finite 
field addition is simply an XOR operation so (when com- 

pared with finite-field multiply) computationally it is no 
more dificult than normal addition. 

[0020] Even with hardware accelerators to perform the 
finite-field multiply, running the multiplies independently 
cause two memory accesses for each multiplication per- 
formed. To generate parity for a stripe write, with N input 
buffers and 2 destinations, this would result in 6N+2 
memory accesses. 

[0021] In the past, due to questions as to whether the 
desired performance could be achieved, RAID-6 was not 
really used in industry. Reed-Solomon-based RAID-6 has 
been understood for many years but previously it was 
thought to not be worth the cost. So, most implementations 
were limited to academic exercises and thus simply did all 
of the computations in software. RAID 6, implemented with 
all calculations in software, performs extremely poorly and 
this is one of the reasons why RAID 6 has not been used very 
much. Because of this, much attention has been paid in 
recent years to try to devise better approaches for imple- 
menting RAID 6. Stated differently, there has been a long- 
felt need to make RAID 6 work with good performance (a 
need that has existed for many years) and that need has not, 
until now, been met. 

[0022] As mentioned above, one approach used in some 
DMA controllers found in RAID-6 capable subsystems is to 
provide an accelerator to perform a finite-field multiplication 
on a set of data. Most RAID subsystems that have a DMA 
controller also have an accelerator to perform an XOR on 
two or more sets of data (usually buffered in memory 
somewhere within the subsystem) and place the result in a 
destination buffer. Using these two features, the finite-field 
sum-of-products calculations needed for these various 
RAID-6 operations can be performed in much less time and 
with much less work by the processor than if all of the work 
were done in software. 

[0023] It turns out, however, that that solution is still not 
optimal. The multiplier reads data from a source buffer, 
performs the multiplication, then writes the result out to a 
destination buffer. This is often done twice for every input 
buffer because two results are often needed and each source 
must be multiplied by a two different constants. Also, once 
the multiplications have been completed, each product 
buffer must be XORed together. In the best case, to XOR all 
of the product buffers will require the XOR accelerator to 
read the data from the source buffers once and write out the 
result to a destination buffer. Again, this often must be done 
twice, once for each set of result data generated. While this 
approach yields better performance than a system accom- 
plished solely in software, it still provides very poor per- 
formance as compared with other (non-RAID-6) RAID 
systems. 

[0024] It will thus be appreciated that there has been and 
is a great and long-felt need for a better way to implement 
RAID 6. It would be extremely helpful if an approach could 
be devised which would provide RAID 6 function with good 
performance. 

SUMMARY OF THE INVENTION 

[0025] As mentioned above, a standalone hardware engine 
is used on an advanced function storage adaptor to improve 
the performance of a Reed-Solomon-based RAID-6 imple- 
mentation. The engine can perform the following opera- 
tions: 
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[0026] generate P and Q parity for a full stripe write, 

[0027] generate updated P and Q parity for a partial stripe 
write, 

[0028] generate updated P and Q parity for a single write 
to one drive in a stripe, and 

[0029] generate the missing data for one or two drives. 

[0030] The engine requires all the source data to be in the 
advanced function storage adaptor memory (external 
DRAM) before it is started. The engine only needs to be 
invoked once to complete any of the four above listed 
operations. The engine will read the source data only once 
and output to memory the full results for any of the listed 
four operations. 

[0031] In some prior-art systems, for N inputs, there 
would be 6N+2 memory accesses. With this approach, on the 
other hand, the same operation would require only N+2 
memory accesses. 

DESCRIPTION OF THE DRAWING 

[0032] The invention will be described with respect to a 
drawing in several figures. 

[0033] FIG. 1 shows a hardware accelerator in functional 
block diagram form. 

[0034] FIG. 2 shows a RAID 6 subsystem employing a 
hardware accelerator such as that shown in FIG. 1. 

DETAILED DESCRIPTION 

[0035] The invention will now be described in some detail 
with respect to some of the functions provided. 

[0036] Full-stripe write. For a full-stripe write, firmware 
(e.g. firmware 240 in FIG. 2) will first instruct the hardware 
to DMA (for example via host bus 110) all the new data to 
memory (e.g. DRAM 220 in FIG. 2). Then firmware will 
invoke this invention only once to generate both the P and 
Q parity (which are for example found in buffers 251, 252 
in FIG. 2 at the end of the invocation of the invention). Per 
this invention hardware will read data only once from 
memory (for example via DRAM bus 210 in FIG. 2) and 
then write to memory both the new P and Q parity (further 
details of this invention's flow are described below). (DASD 
means direct access storage device.) Firmware then instructs 
hardware to write the stripe data to all the data drives and to 
write the P parity and Q parity to those parity drives, for 
example via DASD bus 300 in FIG. 2. 

[0037] Partial-stripe write. For a partial-stripe write, firm- 
ware (e.g. firmware 240 in FIG. 2) will first instruct the 
hardware to DMA (for example via host bus 110) all the new 
data to memory (e.g. DRAM 220 in FIG. 2). Then firmware 
will instruct hardware to read into memory the current data 
for the stripe from the drives that are not being updated (for 
example via DASD bus 300 in FIG. 2). (The data read is 
from the data drives that are not being updated, and the P and 
Q drives need not be read.) Then firmware will invoke this 
invention only once to generate both the P and Q parity. (The 
calculations take place wholly within the RAID adaptor 200 
in FIG. 2.) Per this invention hardware will read data only 
once from memory and then write to memory both the new 
P and Q parity (further details of this invention's flow are 
described below). Firmware then instructs hardware to write 

the new data to those data drives and to write the new P 
parity and Q parity to those parity drives. Importantly, with 
both the previously mentioned full strip write and the partial 
stripe write just mentioned, the invention minimizes traffic 
on the DRAM bus 210 as compared with some prior-art 
approaches. The number of memory accesses required to 
read the data from memory, and to write back to memory the 
P and Q for the stripe, is only N+2. 

[0038] Single-drive write. For a single-drive write, firm- 
ware will first instruct the hardware to DMA all the new data 
to memory. Then firmware will instruct hardware to read the 
old data, that will be updated, from the drive to memory. 
Then firmware will instruct hardware to read the old P parity 
and Q parity from the drives to memory. Then firmware will 
invoke this invention once to generate both the P and Q 
parity. Per this invention hardware will read old data and 
new data data only once from memory and then write to 
memory both the new P and Q parity (further details of this 
invention's flow are described below). Firmware then 
instructs hardware to write the new data to the data drive and 
to write the new P parity and Q parity to those parity drives. 
Here, as before, the traffic on busses 110 and 300 is 
minimized as compared with some prior-art approaches. 

[0039] Regenerating the missing data in a stripe. When 
one or two drives fail, to regenerate the missing data in a 
stripe, firmware 240 will first instruct the hardware to DMA 
all good data from the data and parity drives (via DASD bus 
300) to memory. Then firmware will invoke this invention 
once to generate all the missing datalparity. Per this inven- 
tion hardware will read data only once from memory and 
then write to memory both missing drives data for this stripe 
(further details of this inventions flow are described below). 
Firmware then uses this data either to provide it to the 
system for a read (via host bus 110) or to write out to a hot 
spare drive (via DASD bus 300), or to write out to a 
replacement drive (via DASD bus 300). 

[0040] It is instructive to describe how the calculations 
within the adaptor 200 are performed. 

[0041] In this invention, each byte of source data is read 
from memory only once. Then, each byte of source data is 
multiplied by two different constants (e.g. Ka 405, Kb 406 
in FIG. I), one for computing the first set of result data (data 
flow 407,409,251) and one for the second (data flow 408, 
410, 252). These two constants are simply the coefficients 
corresponding to the particular source data term in the two 
solution equations. After the source data have been multi- 
plied by the two constants (e.g. with multipliers 407, 408), 
it is XORed (XOR 409, 410) with, on the first source with 
zero, and on all subsequent sources with the accumulated 
sum of products (feedback path from 251 to 409 and from 
252 to 410). Once each source has been multiplied and 
added into the sum of products, the two small internal 
buffers 251, 252 are flushed out to memory. The engine 
works on slices of the data, for example if the internal 
buffers 251 and 252 are 512 bytes in size, then the invention 
will read the first 512 bytes from each of the N sources as 
described above, then write the first 512 bytes of result from 
251 to Destination 1413 and from 252 to Destination 2414. 
This process is repeated on the second slice of the sources, 
and so on, until all the source data have been processed. 

[0042] With this sum-of-products accelerator, each set of 
source data is read from memory only once, each result is 
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written to memory only once, and there are no other accesses 
to memory. This reduces the requirements on memory speed 
and increases the subsystem throughput. 

[0043] In this accelerator, each source is read from 
memory and sent to two multipliers. In FIG. 1, for example, 
a particular piece of source data (e.g. stored in source 1, 
reference designation 401) is passed at one time to compu- 
tational path 407, 409, 251 and simultaneously (or perhaps 
at a different time) to computational path 408,410,252. The 
multipliers 407,408 then compute the products of the source 
data and input constants where the input constants (Ka 405, 
Kb 406) are provided by firmware for each source data 
(Each source 401.402 etc. has two uniaue constants Ka. Kb. , , 

for example if there are 16 sources then there are 32 
constants). The products from the multipliers 407, 408 are 
then sent to the two XOR engines 409,410 which XORs the 
product with the accumulated products from the previous 
sources. The result of the XOR engines goes into two 
separate internal buffers 251, 252 which, when all products 
have been XORed together, are written out to memory (e.g. 
to destinations 413, 414). 

[0044] In an exemplary embodiment the first and second 
computational paths, including the multipliers 407, 408, the 
XORs 409, 410, and the buffers 251, 252 are all within a 
single integrated circuit, and the feedback paths from buffers 
251,252 back to the XORs 409,410 are all within the single 
integrated circuit. In this way the number of memory reads 
(from the source memories 401-404 and to the destination 
memories 413, 4144) for a given set of calculations is only 
N+2. 

[0045] It is instructive to compare the workings of the 
inventive accelerator with prior-art efforts to provide accel- 
erators. With a prior-art attempt at an accelerator, as men- 
tioned above, the old approach calls for 2N+2 operations 
that firmware must instruct the hardware to perform. 

[0046] With one prior-art attempt at an accelerator, there is 
a single computational path analogous to the top half of FIG. 
1, that is, with a single multiplier, single XOR, etc. 

[0047] In contrast, with the inventive approach, each set of 
input data is read from the input buffers once, multiplied 
internally by two different constants, and the products are 
added to the respective results and are then written out to the 
result buffers. A particular read is passed to both of the 
multipliers 407, 408 so that calculations can be done in 
parallel, and so that the read need only be performed once. 
With this invention, for N input buffers and 2 destinations 
there are N+2 buffer accesses. 

[0048] This reduces the number of memory accesses and 
only requires firmware to set up the hardware to perform one 
operation. In a subsystem with limited bandwidth to 
memory, this invention will greatly improve performance. 

Hot Spares 

[0049] In this discussion we frequently refer to a RAID-6 
system where the number of data drives is (for example) N 
and thus with P and Q redundancy drives the total number 
of drives is N+2. It should be appreciated, however, that in 
many RAID-6 systems, the designer may choose to provide 
one or more "hot spare" drives. Hot spare drives are pro- 
vided in a DASD array so that if one of the working drives 
fails, rebuilding of the contents of the failed drive may be 

accomplished onto one of the hot spare drives. In this way 
the system need not rely upon a human operator to pull out 
a failed drive right away and to insert a replacement drive 
right away. Instead the system can start using the hot spare 
drive right away, and at a later time (in less of a huny) a 
human operator can pull the failed drive and replace it. As 
a matter of terminolo~v. then. the total number of drives 

'22, 

physically present in such a system could be more than N+2. 
But the discussion herein will typically refer to N data drives 
and a total number of drives (including P and Q) as N+2, 
without excluding the possibility that one or more hot spare 
drives are also present if desired. 

EXAMPLE 

[0050] A stripe write example where N=2. The invention 
will be described in more detail with respect to an example 
in which N+2 (the total number of drives) equals 4. It should 
be appreciated that the invention is not limited to the 
particular case of N=2 and in fact offers its benefits in 
RAID-6 systems where N is a much larger number. In 
addition it should be appreciated that the invention can offer 
its benefits with RAID systems that are at RAID levels other 
than RAID 6. 

[0051] Turning now to FIG. 2, the RAID Adaptor 200 
would DMA data from the Host 100 over the host bus 110 
into buffers 221 and 222 in external DRAM 220 on the 
RAID Adaptor 200. Buffer 221 is large enough to hold all 
the write data going to DASD 311 for this stripe write. 
Buffer 222 is large enough to hold all the write data going 
to DASD 312 for this stripe write. Buffer 223 will hold the 
P for this stripe; this data will go to DASD 313. Buffer 224 
will hold the Q for this stripe write; this data will go to 
DASD 314. The Processor Firmware 240 instructs the 
invention, hardware Accelerator 250, to generate P and Q for 
the stripe. 

[0052] Importantly, the Accelerator reads a part of Buffer 
221 (typically 512 bytes) over the DRAM bus 210, and use 
the first two RS (Reed-Solomon) coefficients (Ka, Kb in 
FIG. 1) to generate a partial P and Q, storing these inter- 
mediate results in the partial internal buffers 251 and 252. 
The Accelerator then reads a part of Buffer 222 (again, 
typically 512 bytes) over the DRAM bus 210, and use the 
next two RS coefficients to generate a partial P and Q storing 
these in partial internal buffers 251 and 252. In this example 
where N=2, there are two data sources, so the last of the two 
data sources will by now have been read and the computa- 
tion is complete. The internal buffer 251, which now con- 
tains the result of a computation, is written via DRAM bus 
210 to external buffer 223. Likewise internal buffer 252 is 
written via DRAM bus 210 to external buffer 224. The steps 
described in this paragraph are repeated for each remaining 
512-byte portion in the input buffers 221, 222 until all 
computations for the stripe have been performed. 

[0053] Then firmware will instruct hardware to do the 
following: 

[0054] write data from Buffer 221 over the DRAM bus 
210 to the DASD bus 300 and to DASD 311. 

[0055] write data from Buffer 222 over the DRAM bus 
210 to the DASD bus 300 and to DASD 312. 

[0056] write P from Buffer 223 over the DRAM bus 210 
to the DASD bus 300 and to DASD 313. 
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[0057] write Q from Buffer 224 over the DRAM bus 210 
to the DASD bus 300 and to DASD 314. 

[0058] These operations are optimally started by firmware 
overlapped. (They could be carried out seriatim but it is 
optimal that they be overlapped.) The bus 300 is, generally, 
a DASD (directly addressed storage device) bus, and in one 
implementation the bus 300 could be a SAS (serial attached 
SCSI) bus. 

[0059] In an exemplary embodiment, the invention is 
implemented in an ASIC 230, and the RAID firmware 240 
runs on an embedded PPC440 (processor) in that same ASIC 
230. 

[0060] The same hardware just described is able to read 
data andor PIQ from the buffer, to do the RS calculations, 
and to write the data andor PIQ back to the buffer in the best 
way possible (using a single invocation from firmware). 

[0061] It will be appreciated that the moving of data 
tolfrom the host and moving datalPlQ tolfrom the drives is 
done in a standard RAID-6 fashion and these movements are 
only described to show how the invention is used. The 
particular type of data bus between the adaptor 200 and the 
host 100 is not part of the invention and could be any of 
several types of host bus without departing from the inven- 
tion. For example it could be a PC1 bus or a PCIe bus, or 
fibre channel or Ethernet. The particular type of drives 
connected to the adaptor 200, and the particular type of 
DASD bus 300 employed, is not part of the invention and 
could be any of several types of DASD drive and bus 
without departing from the invention. For example the bus 
could be SAS, SATA (serial ATA) or SCSI. The type of drive 
could be SATA or SCSI for example. 

[0062] It is again instructive to compare the system 
according to the invention with implementations that have 
been tried in past years, all without having achieved satis- 
factory performance. 

[0063] As one example, the prior RS calculations would 
have been done in software, either on a Host processor (e.g. 
in host 100 in FIG. 2) or by firmware in an embedded 
processor. Those calculations would have been very proces- 
sor- and memory-intensive, and such a solution would not 
provide bandwidth needed for a successful RAID-6 product. 

[0064] A simple RS hardware engine would just read a 
buffer, do the RS math and write back to a buffer. In a stripe 
write with 16 data drives and two parity drives (eighteen 
total drives) that engine would have to be invoked 16 times, 
then the resulting 16 buffers would have to be XORed 
together to generate the P result. What's more, that engine 
would have to be invoked 16 more times and those 16 
resulting buffers would then have to be XORed together to 
generate the Q result. This is still very memory intensive, 
plus firmware is still invoked many times to reinstruct the 
hardware. 

[0065] Since the same source data is used in both the P and 
Q calculation, the system according to the invention calcu- 
lates them simultaneously, that way the source data is read 
from the buffer only once. The system according to the 
invention keeps a table of all the RS coefficients, 32 in the 
case of a 16-drive system, so that firmware does not have to 
reinstruct the hardware. And the system according to the 
invention keeps all the partial products stored internally so 

that only the final result is written back to the buffer. This 
generates a minimum number of external buffer accesses, 
resulting in a maximum performance. 

[0066] It will be appreciated that one apparatus that has 
been described is an apparatus which performs one or more 
sum-of-products calculations given multiple sources, each 
with one or more corresponding coefficients, and one or 
more destinations. With this apparatus, each source is only 
read once, each destination is only written once, and no other 
reads or writes are required. With this apparatus, when 
applied to the particular case of Reed-Solomon codes for 
RAID 6, the sum-of-products is computed using finite-field 
arithmetic. The apparatus is implemented as a hardware 
accelerator which will perform all of the calculations nec- 
essary to compute the result of two sum-of-products calcu- 
lations as a single operation without software intervention. 
The RAID subsystem can have hardware capable of gener- 
ating data for multiple sum-of-products results given a set of 
input data and multiple destinations. In one embodiment, the 
system is one in which the data for the data drives is read 
from the subsystem memory only once, the redundancy data 
(P and Q information) is written into subsystem memory 
only once, and no other memory accesses are part of the 
operation. Desirably, in this system, the sum-of-products is 
computed entirely by hardware and appears as a single 
operation to software. 

[0067] In one application, the inputs to the sum-of-prod- 
ucts calculation are the change in data for one drive and two 
or more sets of redundancy data from the redundancy drives 
and the results are the new sets of redundancy data for the 
redundancy drives. 

[0068] In another application, the inputs to the sum-of- 
products calculations are the sets of data from all of the 
available drives and the results are the recreated or rebuilt 
sets of data for the failed or unavailable drives. 

[0069] It should be noted that while in the examples in this 
invention disclosure refer to two sets of result data or 
destinations for the two sum of products results, the scope of 
the invention is meant to cover two destinations or more than 
two destinations. For instance, if rather than a RAID-6 
implementation, a RAID implementation which supported 
three or more sets of redundancy data and three or more disk 
failures could also use this accelerator. In such a case, in 
addition to the two computational paths 407, 409, 251 and 
408, 410, 252, there would be at least one additional 
computational path running in parallel with its own source 
of constants provided to a multiplier, its own path to an 
XOR, and its own buffer with feedback for finite-field 
polynomial calculations. 

[0070] Discussion in greater detail. It is instructive to 
describe the various methods and apparatus according to the 
invention yet again, in rather more detail. 

[0071] One method, for a full stripe write, is for use with 
an adaptor 200, and a host 100 running an operating system 
communicatively coupled by a first communications means 
110 with the adaptor 200, and an array of N+2 direct access 
storage devices 311-314, N being at least one, the array 
communicatively coupled with the adaptor 200 by a second 
communications means 300, the adaptor 200 not running the 
same operating system as the host 100, the method com- 
prising the steps of 
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[0072] reading first through Nth source data from the host 
to respective first through Nth source memories (401-404 
in FIG. 1; 221-224 in FIG. 2) in the adaptor 200 by the 
first communications means 110; 

[0073] performing two sum-of-products calculations 
entirely within the adaptor 200, each calculation being a 
function of each of the first through Nth source data, each 
of the two calculations each further being a function of N 
respective predetermined coefficients (405-406 in FIG. I), 
each of the two calculations yielding a respective first and 
second result (accumulated in buffers 251, 252), the 
calculations each nerformed without the use of the first 
communications means and each performed without the 
use of the second communications means; 

[0074] the calculations requiring only N+2 memory 
accesses; 

[0075] writing the first through Nth source data to first 
through Nth direct access storage devices by the second 
communications means, and 

[0076] writing the results of the two calculations to ~ + 1 "  
and ~ + 2 "  direct access storage devices by the second 
communications means. 

[0077] Another method involving a single-drive write 
drawing upon existing P and Q information, involves read- 
ing first source data from the host to a first source memory 
in the adaptor by the first communications means; reading at 
least second and third source data from resvective at least 
two direct access storage devices by the second communi- 
cations means; performing two sum-of-products calcula- 
tions entirely within the adaptor, each calculation being a 
function of the first source data and of the at least second and 
third source data. each of the two calculations each further 
being a function of at least three respective predetermined 
coefficients, each of the two calculations yielding a respec- 
tive first and second result, the calculations each performed 
without the use of the first communications means and each 
verformed without the use of the second communications 
means; the calculations requiring only N+2 memory 
accesses; writing the first source data to a respective first 
direct access storage device by the second communications 
means, and writing the results of the two calculations to 
second and third direct access storage devices (receiving P 
and Q redundancy information) by the second communica- 
tions means. 

[0078] Yet another method involving a single-drive write 
drawing upon all of the other data drives and not drawing up 
on existing P and Q information, comprises the steps of: 
reading first source data from the host to a first source 
memory in the adaptor by the first communications means; 
reading second through Nth source data from respective at 
least N-1 direct access storage devices by the second 
communications means; performing two sum-of-products 
calculations entirely within the adaptor, each calculation 
being a function of the first source data and of the second 
through Nth source data, each of the two calculations each 
further being a function of at least N respective predeter- 
mined coefficients, each of the two calculations yielding a 
respective first and second result, the calculations each 
performed without the use of the first communications 
means and each performed without the use of the second 

memory accesses; writing the first source data to a respec- 
tive first direct access storage device by the second com- 
munications means, and writing the results of the two 
calculations to N + I ~ ~  a n d ~ + 2 "  direct access storage devices 
by the second communications means. 

[0079] A method for a partial stripe write comprises the 
steps of: reading first through M" source data from the host 
to respective first through Mth source memories in the 
adaptor by the first communications means; reading M+1" 
through Nth source data from respective at least N-M direct 
access storage devices by the second communications 
means; performing two sum-of-products calculations 
entirely within the adaptor, each calculation being a function 
of the first source data and of the second through Nth source 
data, each of the two calculations each further being a 
function of at least N respective predetermined coefficients, 
each of the two calculations yielding a respective first and 
second result, the calculations each performed without the 
use of the first communications means and each performed 
without the use of the second communications means; the 
calculations requiring only N+2 memory accesses; writing 
the first through Mth source data to respective first through 

direct access storage devices by the second communi- 
cations means, and writing the results of the two calculations 
to ~ + 1 "  and ~ + 2 "  direct access storage devices by the 
second communications means. 

[0080] A method for recovery of data upon loss of two 
drives comprises the steps of: reading third through ~ + 2 "  
source data from respective at least N direct access storage 
devices by the second communications means; and perform- 
ing two sum-of-products calculations entirely within the 
adaptor, each calculation being a function of the third 
through ~ + 2 "  source data, each of the two calculations each 
further being a function of at least N respective predeter- 
mined coefficients, each of the two calculations yielding a 
respective first and second result, the calculations each 
performed without the use of the first communications 
means and each performed without the use of the second 
communications means; the calculations requiring only N+2 
memory accesses. 

[0081] An exemplary adaptor apparatus comprises: a first 
interface disposed for communication with a host computer; 
a second interface disposed for communication with an array 
of direct access storage devices; N input buffers within the 
adaptor apparatus where N is at least one; a first sum-of- 
products engine within the adaptor and responsive to inputs 
from the N input buffers and responsive to constants and 
having a first output; a second sum-of-products engine 
within the adaptor and responsive to inputs from the N input 
buffers and responsive to constants and having a second 
output; each of the first and second sum-of-products engines 
performing finite-field multiplication and finite-field addi- 
tion; storage means within the adaptor storing at least first, 
second, third and fourth constants; a control means within 
the adaptor; the control means disposed, in response to a first 
single command, to transfer new data from the host into the 
N input buffers, to perform a first sum-of-products calcula- 
tion within the first sum-of-products engine using first 
constants from the storage means yielding the first output, to 
perform a second sum-of-products calculation within the 
second sum-of-products engine using second constants from 
the storage means yielding the second output, the first and 

communications means; the calculations requiring only N+2 second sum-of-products calculations performed without the 
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use of the first interface, the first and second sum-of- 
products calculations performed without the use of the 
second interface, thereafter to transfer the new data via the 
second interface to direct access storage devices and to 
transfer the first and second outputs via the second interface 
to direct access storage devices; the control means disposed, 
in response to a second single command, to transfer data 
from N-2 of the direct access storage devices into the N 
input buffers, to perform a third sum-of-products calculation 
within the first sum-of-products engine using third constants 
from the storage means yielding the first output, to perform 
a fourth sum-of-products calculation within the second 
sum-of-products engine using fourth constants from the 
storage means yielding the second output, the third and 
fourth sum-of-products calculations performed without the 
use of the first interface, the third and fourth sum-of- 
products calculations performed without the use of the 
second interface, thereafter to transfer the first and second 
outputs via the second interface to direct access storage 
devices or to transfer the first and second outputs via the first 
interface to the host. 

[0082] The apparatus may further comprise a third sum- 
of-products engine within the adaptor and responsive to 
inputs from the N input buffers and responsive to constants 
and having a third output; the third sum-of-products engine 
performing finite-field multiplication and finite-field addi- 
tion. 

[0083] In this apparatus, the calculations of the first and 
second sum-of-products engines together with the constants 
may comprise calculation of Reed-Solomon redundancy 
data. In this apparatus, the first sum-of-products engine and 
the second sum-of-products engine may operate in parallel. 
In this apparatus, the first sum-of-products engine and the 
second sum-of-products engine may lie within a single 
application-specific integrated circuit, in which case the first 
single command and the second single command may be 
received from outside the application-specific integrated 
circuit. In this apparatus, it is desirable that the first sum- 
of-products engine receives its input from a memory read, 
and that the second sum-of-products engine receives its 
input from the same memory read. 

[0084] It will be appreciated that those skilled in the art 
will have no difficulty at all in devising myriad obvious 
improvements and variants of the embodiments disclosed 
here, all of which are intended to be embraced by the claims 
which follow. 

What is claimed is: 
1. A method for use with an adaptor, and a host running 

an operating system communicatively coupled by a first 
communications means with the adaptor, and an array of 
N+2 direct access storage devices, N being at least one, the 
array communicatively coupled with the adaptor by a second 
communications means, the adaptor not running the same 
operating system as the host, the method comprising the 
steps of  

reading first through Nth source data from the host to 
respective first through Nth source memories in the 
adaptor by the first communications means; 

performing two sum-of-products calculations entirely 
within the adaptor, each calculation being a function of 
each of the first through Nth source data, each of the two 

calculations each further being a function of N respec- 
tive predetermined coefficients, each of the two calcu- 
lations yielding a respective first and second result, the 
calculations each performed without the use of the first 
communications means and each performed without 
the use of the second communications means; 

the calculations requiring only N+2 memory accesses; 

writ$g the first through Nth source data to first through 
N direct access storage devices by the second com- 
munications means, and 

writingththe results of the two calculations to ~ + 1 "  and 
N+2 direct access storage devices by the second com- 
munications means. 

2. The method of claim 1 wherein each of the sum-of- 
products calculations is performed using finite-field arith- 
metic. 

3. A method for use with an adaptor, and a host running 
an operating system communicatively coupled by a first 
communications means with the adaptor, and an array of 
N+2 direct access storage devices, N being at least one, the 
array communicatively coupled with the adaptor by a second 
communications means, the adaptor not running the same 
operating system as the host, the method comprising the 
steps of 

reading first source data from the host to a first source 
memory in the adaptor by the first communications 
means; 

reading at least second and third source data from respec- 
tive at least two direct access storage devices by the 
second communications means; 

performing two sum-of-products calculations entirely 
within the adaptor, each calculation being a function of 
the first source data and of the at least second and third 
source data, each of the two calculations each further 
being a function of at least three respective predeter- 
mined coefficients, each of the two calculations yield- 
ing a respective first and second result, the calculations 
each performed without the use of the first communi- 
cations means and each performed without the use of 
the second communications means; 

the calculations requiring only N+2 memory accesses; 

writing the first source data to a respective first direct 
access storage device by the second communications 
means, and 

writing the results of the two calculations to second and 
third direct access storage devices by the second com- 
munications means. 

4. The method of claim 3 wherein each of the sum-of- 
products calculations is performed using finite-field arith- 
metic. 

5. A method for use with an adaptor, and a host running 
an operating system communicatively coupled by a first 
communications means with the adaptor, and an array of 
N+2 direct access storage devices, N being at least one, the 
array communicatively coupled with the adaptor by a second 
communications means, the adaptor not running the same 
operating system as the host, the method comprising the 
steps of 
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reading first source data from the host to a first source 
memory in the adaptor by the first communications 
means; 

reading second through Nth source data from respective at 
least N-1 direct access storage devices by the second 
communications means; 

performing two sum-of-products calculations entirely 
within the adaptor, each calculation being a function of 
the first source data and of the second through Nth 
source data, each of the two calculations each further 
being a function of at least N respective predetermined 
coefficients, each of the two calculations yielding a 
respective first and second result, the calculations each 
performed without the use of the first communications 
means and each performed without the use of the 
second communications means; 

the calculations requiring only N+2 memory accesses; 

writing the first source data to a respective first direct 
access storage device by the second communications 
means, and 

writingththe results of the two calculations to ~ + 1 "  and 
N+2 direct access storage devices by the second com- 
munications means. 

6. The method of claim 4 wherein each of the sum-of- 
products calculations is performed using finite-field arith- 
metic. 

7. A method for use with an adaptor, and a host running 
an operating system communicatively coupled by a first 
communications means with the adaptor, and an array of 
N+2 direct access storage devices, N being at least one, the 
array communicatively coupled with the adaptor by a second 
communications means, the adaptor not running the same 
operating system as the host, the method comprising the 
steps of: 

reading first through source data from the host to 
respective first through Mth source memories in the 
adaptor by the first communications means; 

reading M+1" through Nth source data from respective at 
least N-M direct access storage devices by the second 
communications means; 

performing two sum-of-products calculations entirely 
within the adaptor, each calculation being a function of 
the first source data and of the second through Nth 
source data, each of the two calculations each further 
being a function of at least N respective predetermined 
coefficients, each of the two calculations yielding a 
respective first and second result, the calculations each 
performed without the use of the first communications 
means and each performed without the use of the 
second communications means; 

the calculations requiring only N+2 memory accesses; 

writing the first through M" source data to respective first 
through bIth direct access storage devices by the second 
communications means, and 

writinqhthe results of the two calculations to ~ + 1 "  and 
N+2 direct access storage devices by the second com- 
munications means. 

8. The method of claim 7 wherein each of the sum-of- 
products calculations is performed using finite-field arith- 
metic. 

9. A method for use with an adaptor, and a host running 
an operating system communicatively coupled by a first 
communications means with the adaptor, and an array of 
N+2 direct access storage devices, N being at least one, the 
array communicatively coupled with the adaptor by a second 
communications means, the adaptor not running the same 
operating system as the host, the method comprising the 
steps of: 

reading third through ~ + 2 "  source data from respective at 
least N direct access storage devices by the second 
communications means; and 

performing two sum-of-products calculations entirely 
within the adaptor, each calculation being a function of 
the third through Nth source data, each of the two 
calculations each further being a function of at least N 
respective predetermined coefficients, each of the two 
calculations yielding a respective first and second 
result, the calculations each performed without the use 
of the first communications means and each performed 
without the use of the second communications means; 

the calculations requiring only N+2 memory accesses. 
10. The method of claim 9 further comprising the step of: 

writing the results of the two calculations to replacements 
of the first and second direct access storage devices by 
the second communications means. 

11. The method of claim 9 further comprising the step of: 

writing the results of the two calculations to respective hot 
spare direct access storage devices by the second 
communications means. 

12. The method of claim 9 further comprising the step of: 

writing the results of the two calculations to the host by 
the first communications means. 

13. The method of claim 10 wherein each of the sum-of- 
products calculations is performed using finite-field arith- 
metic. 

14. The method of claim 11 wherein each of the sum-of- 
products calculations is performed using finite-field arith- 
metic. 

15. The method of claim 12 wherein each of the sum-of- 
products calculations is performed using finite-field arith- 
metic. 

16. Adaptor apparatus for use with a host computer and an 
array of direct access storage devices, the adaptor apparatus 
comprising: 

a first interface disposed for communication with a host 
computer; 

a second interface disposed for communication with an 
array of direct access storage devices; 

N input buffers within the adaptor apparatus where N is at 
least one; 

a first sum-of-products engine within the adaptor and 
responsive to inputs from the N input buffers and 
responsive to constants and having a first output; 

a second sum-of-products engine within the adaptor and 
responsive to inputs from the N input buffers and 
responsive to constants and having a second output; 
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each of the first and second sum-of-products engines 
performing finite-field multiplication and finite-field 
addition; 

storage means within the adaptor storing at least first, 
second, third and fourth constants; 

a control means within the adaptor; 

the control means disposed, in response to a first single 
command, to transfer new data from the host into the N 
input buffers, to perform a first sum-of-products calcu- 
lation within the first sum-of-products engine using 
first constants from the storage means yielding the first 
output, to perform a second sum-of-products calcula- 
tion within the second sum-of-products engine using 
second constants from the storage means yielding the 
second output, the first and second sum-of-products 
calculations performed without the use of the first 
interface, the first and second sum-of-products calcu- 
lations performed without the use of the second inter- 
face, thereafter to transfer the new data via the second 
interface to direct access storage devices and to transfer 
the first and second outputs via the second interface to 
direct access storage devices; 

the control means disposed, in response to a second single 
command, to transfer data from N of the direct access 
storage devices into the N input buffers, to perform a 
third sum-of-products calculation within the first sum- 
of-products engine using third constants from the stor- 
age means yielding the first output, to perform a fourth 
sum-of-products calculation within the second sum-of- 
products engine using fourth constants from the storage 
means yielding the second output, the third and fourth 
sum-of-products calculations performed without the 
use of the first interface, the third and fourth sum-of- 
products calculations performed without the use of the 
second interface, thereafter to transfer the first and 
second outputs via the second interface to direct access 
storage devices or to transfer the first and second 
outputs via the first interface to the host. 

17. The apparatus of claim 16 wherein N is at least six. 
18. The apparatus of claim 17 wherein N is at least 

sixteen. 
19. The apparatus of claim 16 further comprising: 

a third sum-of-products engine within the adaptor and 
responsive to inputs from the N input buffers and 
responsive to constants and having a third output; 

the third sum-of-products engine performing finite-field 
multiplication and finite-field addition. 

20. The apparatus of claim 16 wherein calculations of the 
first and second sum-of-products engines together with the 
constants comprises calculation of Reed-Solomon redun- 
dancy data. 

21. The apparatus of claim 16 wherein the first sum-of- 
products engine and the second sum-of-products engine 
operate in parallel. 

22. The apparatus of claim 16 wherein the first sum-of- 
products engine and the second sum-of-products engine are 
within a single application-specific integrated circuit. 

23. The apparatus of claim 22 wherein the first single 
command and the second single command are received from 
outside the application-specific integrated circuit. 

24. The apparatus of claim 16 wherein the first sum-of- 
products engine receives its input from a memory read, and 
wherein the second sum-of-products engine receives its 
input from the same memory read. 

25. A method for use with a storage adapter, the method 
comprising the steps of 

reading N inputs from memory, N being at least one, and 
for each of the N inputs read from memory: 

performing a part of a first redundancy calculation with 
respect to the each of the N inputs read from memory, 
the part of the first redundancy calculation comprising 
performing a finite-field multiply with respect to a 
respective constant, and XORing the finite-field prod- 
uct with any previous part of the first redundancy 
calculation; 

performing a part of a second redundancy calculation with 
respect to the each of the N inputs read from memory, 
the part of the second redundancy calculation compris- 
ing performing a finite-field multiply with respect to a 
respective constant, and XORing the finite-field prod- 
uct with any previous part of the second redundancy 
calculation; 

repeating the reading step, the performing-a-part-of-a- 
first-redundancy-calculation step, and the performing- 
a-part-of-a-second-redundancy-calculation step, until 
all of the N reads have been done and the first and 
second redundancy calculations have been completed; 
and 

writing a result of the first redundancy calculation to 
memory; 

writing a result of the second redundancy calculation to 
memory; 

whereby the total number of memory reads and writes is 
only N+2. 

26. A method for use with a storage adapter, the method 
comprising the steps of 

reading N inputs from memory, N being at least one, and 
for each of the N inputs read from memory: 

performing a part of a first redundancy calculation with 
respect to the each of the N inputs read from memory, 
the part of the first redundancy calculation comprising 
performing a finite-field multiply with respect to a 
respective constant, and XORing the finite-field prod- 
uct with any previous part of the first redundancy 
calculation; 

performing a part of a second redundancy calculation with 
respect to the each of the N inputs read from memory, 
the part of the second redundancy calculation compris- 
ing performing a finite-field multiply with respect to a 
respective constant, and XORing the finite-field prod- 
uct with any previous part of the second redundancy 
calculation; 

repeating the reading step, the performing-a-part-of-a- 
first-redundancy-calculation step, and the performing- 
a-part-of-a-second-redundancy-calculation step, until 
all of the N reads have been done and the first and 
second redundancy calculations have been completed; 
and 
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writing a result of the first redundancy calculation to 
memory; 

writing a result of the second redundancy calculation to 
memory; 

the first and second redundancy calculations performed in 
parallel. 

27. A method for use with a storage adapter, the method 
comprising the steps of: 

reading N inputs from memory, N being at least one, and 
for each of the N inputs read from memory: 

performing a part of a first redundancy calculation with 
respect to the each of the N inputs read from memory, 
the part of the first redundancy calculation comprising 
performing a finite-field multiply with respect to a 
respective constant, and XORing the finite-field prod- 
uct with any previous part of the first redundancy 
calculation; 

performing a part of a second redundancy calculation with 
respect to the each of the N inputs read from memory, 
the part of the second redundancy calculation compris- 
ing performing a finite-field multiply with respect to a 
respective constant, and XORing the finite-field prod- 
uct with any previous part of the second redundancy 
calculation; 

repeating the reading step, the performing-a-part-of-a- 
first-redundancy-calculation step, and the performing- 
a-part-of-a-second-redundancy-calculation step, until 
all of the N reads have been done and the first and 
second redundancy calculations have been completed; 
and 

writing a result of the first redundancy calculation to 
memory; 

writing a result of the second redundancy calculation to 
memory; 

wherein the finite-field multiplications of the first redun- 
dancy calculation, the XORing of the first redundancy 
calculation, and storage of partial results of the first 
redundancy calculation, and the the finite-field multi- 
plications of the first redundancy calculation, the XOR- 
ing of the first redundancy calculation, and storage of 
partial results of the first redundancy calculation, are all 
performed within a single application-specific inte- 
grated circuit. 
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