
(19) United States
(12) Patent Application Publication (10) pub. NO.: US 2002/0129232 A1

Coffey (43) Pub. Date: Sep. 12,2002

(54) RESET FACILITY FOR REDUNDANT Publication Classification
PROCESSOR USING A FIBRE CHANNEL
LOOP (51) Int. CL7 G06F 151177; G06F 9/24;

G06F 9/00
(76) Inventor: Aedan Diarmuid Cailean Coffey, (52) U.S. C1. .. 71311

Kilkenny (IE)

Correspondence Address:
OPPEDAHL AND LARSON LLP
P 0 BOX 5068
DILLON, CO 80435-5068 (US)

(21) Appl. No.: 10/091,647

(22) Filed: Mar. 5,2002

(30) Foreign Application Priority Data

Jun. 27, 2001 (IE) .. S200110610
Mar. 8, 2001 (IE) .. S200110223

(57) ABSTRACT

A processor resetting apparatus comprises a fibre channel
arbitrated loop (FC-AL) interface arranged to receive a
frame over the FC-AL containing an indicator of a reset
command for a server comprising one of a redundant pair of
servers and including a processor associated with the reset-
ting apparatus. The apparatus further comprises a reset
component, responsive to the reset command, to issue a reset
command for resetting the processor. The apparatus there-
fore provides the ability for a server to reset another server
if it detects that the server is faulty.

Patent Application Publication Sep. 12,2002 Sheet 1 of 6 US 2002/0129232 A1

Patent Application Publication Sep. 12,2002 Sheet 2 of 6

Patent Application Publication Sep. 12,2002 Sheet 3 of 6 US 2002/0129232 A1

Patent Application Publication Sep. 12,2002 Sheet 4 of 6

~.......................................,....,................*...............................~.....
Server Motherboard 495

(540)

Patent Application Publication Sep. 12,2002 Sheet 6 of 6

Sep. 12,2002

RESET FACILITY FOR REDUNDANT PROCESSOR
USING A FIBRE CHANNEL LOOP

FIELD OF THE INVENTION

[0001] The present invention relates to an apparatus and a
method for resetting a processor via a fibre channel arbi-
trated loop (FC-AL).

RELATED APPLICATIONS

[0002] The invention herein disclosed is related to co-
pending application no. S2001/0224 filed on Mar. 8, 2001
entitled "Distributed Lock Management Chip" naming
Aedan Diarmid Cailean Coffey as inventor (Attorney docket
number pi29392)

BACKGROUND OF THE INVENTION

[0003] Growth in data-intensive applications such as
e-business and multimedia systems has increased the
demand for shared and highly available data. AStorage Area
Network (SAN) is a switched network developed to deal
with such demands and to provide scalable growth and
system performance. ASAN typically comprises servers and
storage devices connected via peripheral channels such as
Fibre Channel (FC) and Small Computer Systems Interface
(SCSI), providing fast and reliable access to data amongst
the connected devices. FIG. 1 shows a simple example of a
SAN (10) comprising two servers (Server A (20) and Server
B (30)) connected by a FC-AL (40) to a series of disks (50)
configured as a redundant array of independent disks
(RAID). The SAN (10) is in turn connected through Server
A (20) and Server B (30) to a series of client workstations
(60) via a network (70) (e.g. Ethernet/Internet). Server A
(20) and Server B (30) are themselves in further communi-
cation through a private connection (80) which is not
accessible by the client workstations (60) and whose pur-
pose is to facilitate server resetting.

[0004] Referring now to FIG. 2 where the components of
Server B 30 relevant to the present specification are shown
in more detail. The server includes a PC1 Bus 230 via which
the main components of the server intercommunicate. A
CPU 180 communicates with the PC1 Bus 230 via a North
Bridge controller 200 which also provides access for the
CPU to system memory 190 and the PC1 Bus. A fibre
channel interface chip 220, decodes incoming fibre channel
information and communicates this across the PC1 bus, for
example, by using direct memory access (DMA) to write
information into system memory 190 via the North Bridge
200. Similarly, information is written to the chip 220 for
encoding and transmission across the fibre channel 40. A
network adaptor 160 allows the CPU to process requests
received from clients 60 across the network 70, perhaps
requiring the CPU 180 in turn to make fibre channel requests
for data stored on the disks 50. In the present example, the
server includes a dedicated reset controller and watchdog
circuit 300, for example, Dallas Semiconductor DS705. On
the one hand, the reset controller 300 monitors the state of
the CPU and if it decides the CPU has hung, it will
automatically reset the entire server by asserting a system-
reset signal, which is in turn connected to most of the major
components of the server. Alternatively, the CPU 180 or, for
example, a signal that is asserted by another server on the
private connection 80 could be used to actively reset the
server by instructing the reset controller to assert the system-
reset signal.

[0005] Whilst a SAN with large amounts of cache and
redundant power supplies ensures that data stored in the
network is protected at all times, user-access to the data can
be disabled if a server fails. In a SAN context, server
clustering is a process whereby servers are grouped together
to share data from the storage devices, and wherein each
server is available to client workstations. Since various
servers have access to a common pool of data, the work-
stations have a choice of servers through which to access
that data. This has the advantage of increasing the fault
tolerance of the SAN by providing alternative routes to
stored data should a server fail, thereby maintaining unin-
terrupted data and application availability.

[0006] Clusters may be classified as being failover or
load-balancing. In a failover cluster a given server may be
a hot-spare (or hot-standby) which behaves as a purely
passive node in the cluster and only activates when another
server fails. Servers in load-balancing clusters may be active
at all times in the cluster. Such clusters can produce signifi-
cant performance gains through the distribution of compu-
tational tasks between the servers.

[0007] Any highly available or failover cluster with mul-
tiple servers requires a method of forcing a malfunctioning
server off the system, to prevent it disrupting normal SAN
operation. This facility is conventionally provided by a
feature known as STOMITH (Shoot the Other Machine in
the Head).

[0008] Faulty server operation can be detected through
heartbeat monitoring by hardware or software watchdog
type systems on individual servers. In this process, the
FC-AL (or otherwise) connected servers each issue signals
(or heartbeats) onto the FC-AL at regular intervals. The
connected servers each have at least one watchdog whose
purpose it is to detect the heartbeats of the other servers.
When the heartbeat of a given server is detected by the
watchdogs of the other connected servers, it indicates to
such servers that the issuing server is functioning correctly.
If however, the watchdogs fail to detect the heartbeat of a
given server after a prescribed period (the watchdog tim-
eout), the servers check that the FC-AL connections are
functioning correctly. Further failed attempts to communi-
cate indicate to the other connected servers that the issuing
server is hung. In such circumstances, the private intercon-
nection (80) between the servers enables one of the con-
nected servers to reset or power down the hung server.

[0009] It is acknowledged that in the case of a high level
watchdog operating over the FC-AL, no additional cabling
is required. However, for low level watchdogs with STO-
MITH capability, private interconnections with dedicated
cabling are required, making it difficult to easily expand the
SAN beyond a dedicated backplane. Such dedicated wiring
requires extra PWB traces and extra cabling between pro-
cessors, which is both expensive and contributes to system
unreliability by providing another potential failure point.
Further, since the private interconnections are generally not
FC c o ~ e c t i o n s themselves, they do not allow servers so
interconnected to be separated by the same distances as
would be achievable with FC connections (in FC it is
possible to have devices separated by up to 30 km) thereby
eliminating one of the advantages of using an FC-AL to
connect the SAN.

[0010] Where the private connection 80 of FIG. 2 is not
available, an alternative approach to the problem of resetting

Sep. 12,2002

hung servers which avoids the necessity of private intercon- [0024] FIG. 1 shows a conventional SAN with private
nections described earlier. is to use the FC-AL connections interconnections between its servers:
themselves to deliver reset instructions between servers.

[0011] In the case of FIG. 2, the servers on the FC-AL(40)
are known to co-operate in a "buddy system" wherein at
system initialisation each server is twinned with another so
that each server has only one buddy and is itself a buddy to
that server. Each buddy uses heartbeat monitoring on the
FC-AL (40) to assess the status of its buddy.

[0012] However, whilst heart-beat monitoring on the FC-
AL (40) of the connected buddies enables a server to detect
if its buddy has hung, the normal FC protocol and FC-AL
topology do not enable a server to reset a hung buddy. For
instance in FIG. 2, without the connection 80, there is no
way in which Server A (20) can access the reset controller
and watchdog (300) of Server B (30) to reset Server B (30)
if needed. Consequently, if Server A (20) detects that Server
B (30) is malfunctioning, it can only send a message to
Server B (30) alerting it of its hung state and advising Server
B (30) to take the appropriate remedial action. However, if
Server B (30) is so badly hung, that it cannot alleviate its
own situation, then Server B (30) will remain hung, because
Server A (20) cannot reset it.

SUMMARY OF THE INVENTION

[0013] According to the invention there is a provided a
processor resetting apparatus comprising:

[0014] a fibre channel arbitrated loop (FC-AL) inter-
face arranged to receive a frame containing an indi-
cator of a reset command for a server including a
processor associated with said resetting apparatus;
and

[0015] reset means, responsive to said reset com-
mand, to issue a reset command for resetting said
processor.

[0016] Preferably, the server is one of a redundant pair of
servers.

[0017] Preferably, the apparatus may be a separate com-
ponent of a server motherboard or may be integrated within
the server motherboard.

[0018] The invention provides the ability for a server to
reset another server if it detects that the server is faulty.

[0019] The invention allows the building of a high avail-
ability, scaleable file server that does not require additional
inter-processor wiring for server resetting.

[0020] The invention could be used in a high availability
version of any redundant processing system using fibre
channel as a communications medium.

[0021] The invention could allow high availability server
systems to be offered using existing backplanes and cabling
systems.

[0022] Since all communications for server reset are con-
ducted over a FC-AL, the system can take advantage of the
benefits of FC communications and provide a system that is
scalable beyond a shelf even into two separate geographical
locations.

BRIEF DESCRIPTION OF THE DRAWINGS
[0023] Embodiments of the invention will now be
described with reference to the accompanying drawings, in
which:

[0025] FIG. 2 shows another conventional SAN in which
lock management is provided through a central lock man-
ager;

[0026] FIG. 3 is a block diagram providing a broad
overview of the hardware components of a SAN in which
each server has an associated support device (HASC)
according to a preferred embodiment of the invention to
facilitate server resetting and lock management;

[0027] FIG. 4 is a block diagram of the components of a
frame processed by the support device of FIG. 3;

[0028] FIG. 5 is a more detailed block diagram showing
the components and processes occurring in a server of FIG.
3; and

[0029] FIG. 6 is a block diagram showing a dual loop
embodiment of the invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

[0030] FIG. 3 is a block diagram providing a broad
overview of the hardware components of a FC-AL SAN
where components with the same numerals as in FIG. 2
perform corresponding functions. The SAN comprises one
or more storage shelves holdings disks 50 and a plurality of
highly available servers (only two 20, 30 shown). The
servers may dedicated PCB format devices housed within a
shelf. Such servers could typically include inter alia external
expansion ports for extending the fibre channel 40 from
shelf to shelf and also an external network connector allow-
ing the server to plug into the network 70. Alternatively, the
servers may be stand-alone general-purpose computers.

[0031] In any case, each server 20, 30 has an associated
support device (310) referred to in the description as a
HASC (high availability support chip). For a dedicated
server, the HASC could be implemented as a chip which
plugs into a socket on the server PCB, whereas for a
general-purpose server, the HASC could reside on its own
card, plugging-into the server system motherboard.

[0032] In any case, at system initialisation each high
availability server twins with a buddy. If dedicated servers
are used, twinned servers should preferably not be located in
the same shelf (for added reliability). During normal opera-
tion the highly available servers load share and if a server
loses its buddy it can buddy up with a spare if available. In
the preferred embodiment there may be a requirement for
more high availability processors than provided for by the
natural limit of such systems. For some systems, approxi-
mately 8 shelves would produce a limit of 16 high avail-
ability servers. (In other conventional systems, the servers
would be in one rack and the storage in either the same rack
or another one.) In any case, there are four alternatives to
adding processors:

[0033] (i) Add extra shelves with no drives;

[0034] (ii) Re-package the high-availability server into a
format using SCA (Single Connector Attachment) connec-
tors, so that it can be loaded from the front of a backplane,
instead of one or more disks;

Sep. 12,2002
3

[0035] (iii) Design a custom backplane, capable of taking
lots of high-availability servers, in a front loadable format;
or

[0036] (iv) Design metalwork capable of holding high-
availability servers.

[0037] In any case, a server's HASC (310) is provided
with a FC interface comprising a pair of ports that enable it
to connect to the FC-AL (40) and so communicate with any
server's via their associated FC/PCI chip (220). The HASC
(310) also includes a PC1 interface enabling communication
with its associated server's CPU (180) through the server's
PC1 bus (230).

[0038] The HASC is further provided with connections to
an associated Content Addressable Memory (CAM) (620).
On providing the CAM with the data for which it is required
that a search be done, the CAM will search itself for the data
and if the CAM contains a copy of that data, the CAM will
return the address of the data therein. In this embodiment,
the HASC allows the CAM to be read and written by the
local CPU (180) via the PC1 Bus 230 or by any other device
on the FC-AL (40), via the FC interface. It will be seen that
because, the HASC (310) is ultimately a totally hardware
component it permits fast searching of the CAM. (It will
nonetheless be seen that the HASC can be designed using
software packages, which store the chip design in VHDL
format prior to fabrication.)

[0039] In the preferred embodiment, the HASC (310) is
shown as a separate board from that of the server (30), with
its own Arbitrated Loop Physical Addresses (ALPA). How-
ever, it should be recognised that the HASC (310) could be
incorporated into the server wherein both components would
share the same FC-AL interface (220) and ALPA, such
incorporation producing the benefictl effect of reducing the
latency caused by the provision of HASC support services.

[0040] In this example, data from Server A (20) is trans-
mitted through the FC-AL (40) to Server B (30). Before it is
transmitted on an FC-AL, every byte of data is encoded into
a 10 bit string known as a transmission character (using an
8B/10B encoding technique (U.S. Pat. No. 4,486,739)).
Each un-encoded byte is accompanied by a control variable
of value D or K, designating the status of the rest of the bytes
in the transmission character as that of a data character or a
special character respectively. In general, the purpose of this
encoding process is to ensure that there are sufficient tran-
sitions in the serial bit-stream to make clock recovery
possible.

[0041] All information in FC is transmitted in groups of
four transmission characters called transmission words (40
bits). Some transmission words have a K28.5 transmission
character as their first transmission character and are called
ordered sets. Ordered sets provide a synchronisation facility
which complements the synchronisation facility provided by
the 8B/10B encoding technique.

[0042] Frame delimiters are one class of ordered set. A
frame delimiter includes one of a Start-of-Frame (SOF) or
an End-of-Frame (EOF). These ordered sets immediately
precede or follow the contents of a frame, their purpose
being to mark the beginning and end of frames which are the
smallest indivisible packet of information transmitted
between two devices connected to a FC-AL, FIG. 4. As well
as a Start-of-Frame (SOF) ordered set (110) and an End-

of-Frame (EOF) ordered set (150), each frame (100) com-
prises a header (120), a payload (130), and a Cyclic Redun-
dancy Check (CRC) (140). The header (120) contains infor-
mation about the frame, including:

[0043] routing information (the addresses of the
source and destination devices (122 and 124) known
as the source and destination ALPA respectively)

[0044] the type of information contained in the pay-
load (126)

[0045] and sequence exchangelmanagement infor-
mation (128).

[0046] The payload (130) contains the actual data to be
transmitted and can be of variable length between the limits
of 0 and 2112 bytes. The CRC (140) is a 4-byte record used
for detecting bit errors in the frame when received.

[0047] FIG. 5 shows the processes occurring in Server B
(30) on receipt of a frame from Server A (20) in more detail.
The kame is transmitted to a Serialiser/Deserialiser (SER-
DES) (330) that samples and retimes the signal according to
an internal clock that is phase-locked to the received serial
data (further details can be obtained from Vitesse Data Sheet
VSC7126).

[0048] The SERDES (330) deserialises the data into par-
allel data at g o t h or 1/20, of the rate of the serial data and
transmits the resulting data onto the 10-bit or 20-bit bus
(Deser-Sig (340)). In the embodiment shown in FIG. 5 the
SERDES (330) is shown as an external component, inde-
pendent of the HASC (310) itself, but it should be recogn-
ised that it could equally be an integral component of the
HASC (310).

[0049] The deserialised data (Deser-Sig (340)) is decoded
by a block of 10B18B decoders (350) in accordance with the
inverse of the 8BI10B encoding scheme to convert the
received 10 bit transmission characters into bytes (Decode-
Sig (360)). In the embodiment depicted in FIG. 5, the
10B/8B decoder block (350) is shown as an internal com-
ponent of the HASC (310) but it should be recognised that
the decoding could have been performed in the SERDES
(330) itself.

[0050] The unencoded data (Decode-sig (360)) is trans-
mitted along an 8 bit bus to a frame buffer (370) which
identifies from the unencoded data-stream, frames (100)
transmitted between different devices connected to the FC-
AL (40) and transmits the frames to the HASC controller
(390).

[0051] In one aspect of the preferred embodiment, the
HASC is employed to provide predictable reset operation
and overcome the problem of resetting servers through the
FC-AL. Using an associated HASC (310), one processor
can interrogate and control the reset signals of another
server, thus forcing it off the fibre channel loop if necessary.
In this case, the payload (130) of a frame responsible for
resetting a server includes a reset command (138), FIG. 4.

[0052] In another aspect of the embodiment, the payload
(130) of a frame responsible for lock management is further
divided into a unique identifier flag (132), a description of
the resource requested (134) and a response area (136). In
this case, the unique identifier flag (132) indicates that the
frame (100) contains a lock request and thereby serves to

Sep. 12,2002

differentiate the frame (100) from the rest of the traffic on the
FC-AL (40). The description of the resource requested (134)
section holds the name of the file (or block ID) for which the
presence of locks is being searched. The response area (136)
section of the payload (130) is where a server with a lock on
the file listed in the description of resource requested (134)
writes a message to indicate the same.

[0053] The HASC controller (390) checks the payload of
a received frame for the presence of a reset command (138)
or a lock management unique identifier flag (132). The
HASC controller (390) further extracts from the frame
header (120), the Arbitrated Loop Physical Addresses
(ALPA) of the source and destination devices of the received
frame (122, 124).

[0054] Reset Frames

[0055] Aframe is identified as being a reset frame (i.e. for
the purpose of resetting a server) if its payload (130)
contains a reset command (138).

[0056] In this example, if the ALPA of the destination
device of a reset frame (124), detected by the HASC
controller (390) of Server B (30), does not match the ALPA
of the HASC (310), it indicates that the frame has been sent
from ServerA(20) to reset a server other than Server B (30).
In such case, the frame (100) is transmitted to an 8B/10B
encoding block (400) which re-encodes every 8 bits of the
data into 10 bit transmission characters (Recode-sig (420)).
The resulting data is serialised by the SERDES (330) and
transmitted it to the next device on the FC-AL (60).

[0057] However, if the ALPA of the destination device of
a reset frame (124) does match the ALPAof the HASC (310)
of server B (30), it indicates that Server A (20) has sent the
frame with the intention of resetting Server B (30). In this
case, the frame's reset command (138) activates a reset logic
unit (460) of the HASC (310).

[0058] The reset logic unit (460) subsequently produces
two signals, namely Reset-Warning (480) and Reset-Signal
(490) which are both transmitted to the server's motherboard
(495).

[0059] The Reset-Warning signal (480) is transmitted to
an interrupt input (500) of the server CPU (180) and warns
the server (30) that it is about to be reset so that it can
gracefully shut-down any applications it might be running at
the time. Once the server's applications are shut-down, the
server's CPU (180) transmits its own CPU-Reset-Signal
(510) from its reset output (520) to the server's reset
controller (300) in order to activate the reset process.

[0060] Alternatively if it is necessary to shutdown the
hung server immediately, a Reset-Signal (490) is sent
directly from the reset logic unit (460) of the HASC (310)
to the server reset controller (300). The reset controller (300)
then sends a reset signal to the CPU (CPU-Reset (530)) and
issues system resets (540).

[0061] The system resets (540) are shown more clearly in
FIG. 3 which shows the relationships between the HASC
(310) and the rest of the server (30) and SAN (10) compo-
nents. The system resets (540) comprise an FCPCI-Reset
(550) to the FCIPCI chip (220), a Network-Link-Reset
(560) to the network adaptor (160) and a NB Reset (580) to
the North Bridge (200).

[0062] The reset procedure operates in two modes, namely
reset and release and reset and hold. The reset and release
mode is typically used in high availability systems and is
implemented by transmitting the CPU-Reset (530) and
system reset (540) signals for a period and then terminating
that transmission (i.e. releasing the reset server to continue
functioning as normal). The status of the reset server is
monitored by its buddy to determine whether it is function-
ing properly after the reset operation (i.e. to determine
whether the reset operation has remedied the fault in the
server).

[0063] In the reset and hold mode it is assumed that it is
not possible to remedy the error in the faulty server by
simply resetting it, or in other words that the server would
not function properly after a reset had been terminated.
Consequently the transmission of the CPU reset (530) and
system resets (540) to the errant server are continued until
the server can be replaced.

[0064] So far the discussions of fault detection and server
resetting by the buddy system have described the situation
where only one of the devices in the buddy pair was faulty
at a given point in time. However if both servers in the
buddy pair were to fail at the same time, there is a risk that
the two servers would reset each other simultaneously. In
order to prevent such occurrence, one of the servers in a
buddy pair is designated the master with a watchdog timeout
of shorter duration than that of the other server.

[0065] In the embodiment described above the servers
engage in load-balancing during normal operation and can
buddy up with a spare, if available, if it loses its own buddy.
Whilst the embodiment is described with reference to a two
server buddy system, it should be recognised that the inven-
tion is not limited in respect of the number of servers which
can reset each other.

[0066] In any case, it will be seen that the HASC can
operate in Reset mode without any software configuration or
support, and as such is independent of the server logic.

[0067] Lock Management Frame

[0068] A frame is identified as being for the purpose of
lock management if its payload (130) contains a lock
management unique identifier flag (132). If the ALPA of the
destination device of a lock management frame (124)
matches the ALPA of the HASC (310) (of server B (30) in
this example), it indicates that Server A (20) (in this
example) has sent the frame to check whether or not Server
B (30) has a lock on the file identified in the description of
resource requested section (134) of its payload (130). In
general, however, the originator of a lock management
frame would simply send the frame to itself, ensuring that
the frame would travel all around the loop. In this regard it
should be noted that either the server, via its own FC-AL
port can issue the lock management frame, or it can delegate
this task to its associated HASC. In the former case, a lock
management frame will terminate at the server FC-AL port
with the processor then indicating to the HASC if it has
obtained a lock or not, while in the latter, the HASC notifies
the associated processor if a lock has been obtained or not.

[0069] Prior to transmitting the frame, Server A(20) via its
HASC (310) first checks its own CAM (620) to determine
whether or not it already had a lock on the file by a
concurrently running process based on a previous request for

Sep. 12,2002

the same file from another client workstation (60). If Server
A(20) determines that it does already have a lock on the file,
the client workstation requesting access to the file will have
to wait until the process accessing the file, relinquishes its
locks thereon. It is only if Server A (20) determines that it
does not already have a lock on the file that it transmits a
lock management frame to the other devices on the FC-AL.

[0070] The frame transmitted by Server A (20) includes
Server A's (20) own ALPA as its frame destination ALPA
(124). When the frame is identified by the HASC controller
(390) of Server B (30) as a lock management frame from
another server, the HASC controller (390) extracts the
filename (or the block ID) from the description of resource
requested (134) section of the frame. The HASC controller
(390) then transmits the filename (or block ID) to the CAM
(620), which causes the CAM (620) to search its records for
the presence of the relevant filename (or block ID). The
presence of the corresponding file entry in the CAM (620)
indicates that Server B (30) has a lock on the file of interest.
(As described later, it can also indicate if Server B wants to
lock the file of interest.)

[0071] The results of the CAM (620) search are transmit-
ted back to the HASC controller (390). If the search results
indicate that the server has a lock on the file in question, the
HASC controller (390) will make an entry in the response
area (136) of the frame's payload (130) to that effect.
However if the search results indicate that the server does
not have a lock on the file in question, the frame is not
amended.

[0072] The HASC controller (390) returns the resulting
frame to an 8B/10B encoding block (400) for re-encoding
and subsequent serialisation by the SERDES (330) as
described above. The resulting frame is then transmitted
onto the FC-AL (40) to the next device connected thereto.
The 8B/10B encoding blocks (400) re-encode every 8 bits of
the data into 10 bit transmission characters (Recode-Sig
(420)) to be parallelised by the SERDES (330) and trans-
mitted to the next device on the FC-AL (40).

[0073] However, if the destination ALPA (124) of the
received lock management frame (100) matches the server's
own ALPA, this indicates that the frame has done a full
circle of the FC-AL (40) and has returned to its originator
(Server A (20) in this example) having stimulated each
server on the FC-AL (40) in turn to conduct a search of its
C A M (620) and to amend the frame accordingly.

[0074] If on receiving the frame, the originator of the lock
management frame does not find any entries in the response
area (136) of the frame (loo), then this indicates that the file
in question does not have any locks on it by the other servers
on the FC-AL (40). In this case, the server accesses the file
and the server's HASC controller (390) causes the CAM
(620) to write a lock for the file to its own records, thereby
preventing other servers on the FC-AL (40) from accessing
the file.

[0075] Since it is necessary for Server A (20) to query
every server on the FC-AL for the presence of a lock before
placing its own lock on the file, Server A (20) makes an
additional provisional entry to its own CAM before trans-
mitting its lock management frame to prevent any of the
other servers on the FC-AL from putting a lock on the file
(or in other words, changing its lock status) whilst Server A
(20) is querying the rest of the servers on the FC-AL.

[0076] This can cause two servers seeking to lock the
same file to at the same time provisionally lock the file in
their own CAMS before discovering another server has
provisionally locked the file. There are many ways to resolve
such a scenario, for example, both servers could then release
their provisional lock and re-try a random period afterwards
to resolve access to the file.

[0077] The description of the embodiment has so far
focussed on the lock management functionality in isolation.
However as has already been stated, the buddy system for
identifying and resetting hung servers is particularly impor-
tant in file-sharing systems since a given server that fails
could leave its locks in place indefinitely. However, the
process of resetting a faulty server also clears its locks.
Hence, it is necessary for each server in a buddy pair to
retain a record of its buddy's locks in order to restore its
buddy to the condition it had been (in respect of its locks)
prior to a reset operation, if the buddy hangs. Consequently,
a server's CAM must have sufficient capacity to hold both
its own locks and those of its buddy.

[007S] When a server is finished using a file it must
remove its locks on the file to enable other servers on the
FC-AL (40) to access the file. This is achieved by clearing
the relevant filename from its C A M (620). But since a server
keeps a copy of its buddy's locks it is also necessary for the
server wishing to clear a filename from its CAM (620), to do
so to the copy of its locks in its buddy's CAM (620). If the
CAM (620) has filled with lock records it will not permit
further lock management trafic on the FC-AL until some of
its locks (or those of its buddy) have cleared.

[0079] Further, if a server determines that it has a lock on
a file it could additionally append to its tag on the lock
management frame, its ALPA and/or, the time at which it had
locked the frame. Such data would enable a server to check
the activity on a lock and if the lock has remained unchanged
over an extended period, inferring that the locking server
had hung.

[OOSO] It should also be noted that FC-AL devices support
dual loop modes of operation, enhancing fault-tolerance by
allowing redundant configurations to be implemented. The
dual loop system also offers the potential of increasing
throughput of the SAN by sending commands to a device
over one loop whilst transferring data over the other loop
and this again has importance for file sharing systems.

[OOSl] FIG. 6 shows the relevant details of a server
supporting such duplex operation so that the server can
receive data from either FC-AL loop A and/or FC-AL loop
B, wherein each loop could also be connected to different
devices. The server has two separate PC1 connected HASCs
(310) and SERDES (330) for each loop, with each HASC
(310) being in communication with a common content
addressable memory (CAM) (620) for the purposes of
maintaining file locks in the file sharing system. In this case,
if the HASC were produced as an integrated unit, it would
appear simply as having two FC-AL ports, one for each FC
loop.

1. A processor resetting apparatus comprising:

a fibre channel arbitrated loop (FC-AL) interface arranged
to receive a frame containing an indicator of a reset
command for a server including a processor associated
with said resetting apparatus; and

Sep. 12,2002

reset means, responsive to said reset command, to issue a
reset command for resetting said processor.

2. Apparatus as claimed in claim 1 wherein the server is
one of a redundant pair of servers.

3. Apparatus as claimed in claim 1 wherein the apparatus
comprises one of a separate component of a server mother-
board or an integral element of a server motherboard.

4. Apparatus as claimed in claim 1 wherein said FC-AL
interface is arranged to receive a frame indicative of a lock
request for a resource and wherein said apparatus further
comprises:

means for receiving from said associated processor an
indicator of a resource to be locked;

means for causing said stored indicator to be deleted when
an associated resource is unlocked;

means, responsive to receiving a lock request frame
originating from another processor, for checking any
stored indicators for a matching locked resource;

means, responsive to detecting a match, for transmitting a
frame indicative of said resource being locked by said
processor to the originator of said lock request; and

means, responsive to not detecting a match, for transmit-
ting said lock request frame to the originator of said
lock request.

means for causing a corresponding indicator to be stored; * * * * *

	Front Page
	Drawings
	Specifications
	Claims

