
(19) United States
(12) Patent Application Publication (10) pub. NO.: US 2002/0120717 A1

Giotta (43) Pub. Date: Aug. 29,2002

(54) SCALEABLE MESSAGE SYSTEM

(76) Inventor: Paul Giotta, Winterthur (CH)

Correspondence Address:
OPPEDAHL AND LARSON LLP
P 0 BOX 5068
DILLON, CO 80435-5068 (US)

(21) Appl. No.: 09/750,009

(22) Filed: Dec. 27,2000

Publication Classification

(51) Int. CL7 ... G06F 15/16
(52) U.S. C1. .. 7091219; 709/203

(57) ABSTRACT

A message system for delivering data in the form messages
between message clients comprises a server cluster with a
group of client manager nodes and a group of independent
message manager nodes. The client manager nodes have the
function of managing client connections, whereas the mes-
sage manager are configured to store and distribute mes-
sages. The system further comprising communication chan-
nel means in the form of a multicast messagebus for
providing a multicast communication channel between said
at least one client manager node and said at least one
message manager node. The system guarantees delivery of
a message by storing it until a receiver is ready to consume
it.

Client Manager -------
r--cLGTc-! I

I Cluster vo
I i Prionty Thread 1 1 Prionty Thread I

I I

Client Manager Architecture

Patent Application Publication Aug. 29,2002 Sheet 1 of 2

1 MessageBus Multicast

Cluster .:' .._________________--.*

Drawing 1: Message System Diagram

Client

Client Manager

Messege Manager

I . Cluster-.: .--

I I
1 , Cluster : '------____---'

Drawing 2: Alternate Network Topologies

Patent Application Publication Aug. 29,2002 Sheet 2 of 2

Client Manager

~ . b u s a d s a r s o r m m q u a n 0 - 8 s n e n e commam 0lSPamner

Drawing 3: Client Manager Architecture

! Cluster IIO I Message Manager

Drawing 4: Message Manager Architecture

Aug. 29,2002

SCALEABLE MESSAGE SYSTEM

FIELD OF THE INVENTION

[0001] The invention is in the field of methods and sys-
tems of delivering messages between computer programs
via a message server.

BACKGROUND OF THE INVENTION

[0002] This invention more specifically pertains to the
field of Message Oriented Middleware (MOM). MOM
enables multiple computer programs to exchange discrete
messages with each other over a communications network.
MOM is characterized by 'loose coupling' of senders and
recipients, in that the sender of a message need not know
details about the identity, location or number of recipients of
a message. Furthermore, when an intermediary message
server is employed, message delivery can be assured even
when the ultimate receivers of the message are unavailable
at the time at which it is sent. This can be contrasted with
Connection Oriented Middleware, which requires a com-
puter program to have details of the identity and network
location of another computer, in order that it can establish a
connection to that computer before exchanging data with it.
To establish a connection, both computers must be available
and responsive during the entire time that the connection is
active. Despite the similarities with email, MOM is not
e-mail. E-mail is a system for moving text messages and
attachments to human consumers. MOM is for moving
messages containing arbitrary data between computer pro-
grams. An implementation of an E-mail system could be
realized using MOM, however.

[0003] This invention pertains specifically to the case
where an intermediary message server in employed to store
and distribute messages. Although the senders and receivers
(collectively referred to as clients) are loosely coupled with
each other when communicating via MOM, the intermediary
message servers are normally required to communicate with
these clients in a connection-oriented fashion. Thus permit-
ting senders and receivers to communicate without both
being available at the same time requires the server to be
available at all times. Furthermore all clients who may wish
to exchange messages must be connected to the same server,
or different servers which are capable or working together in
a connection-oriented fashion to achieve the equivalent
functionality of a single server, i.e. to serve as a single
logical server. MOM is often used in systems in which a
large number of servers have to serve as one logical server,
as one of the reasons for employing MOM is to alleviate the
requirement of defining which programs may exchange data
with each other a priori. This means that large organizations
that use MOM for computer applications distributed
throughout the organization, or organizations that use MOM
to provide service to the general public over the internet,
must be ready to accommodate many thousands of programs
communicating through a single logical server. In addition,
there may be demands to be able to deliver messages within
a limited amount of time. Security trading, live online
auctions and chat rooms are examples of potential MOM
applications that have restriction on the amount of time
required to deliver messages. These factors combine to
create the need for MOM servers that can handle large
message volumes quickly and reliably.

[0004] The following factors dictate the need for a single
logical message server that is implemented using the com-

bined resources of multiple physical computers in order to
meet the needs of the most demanding MOM applications:

[0005] There are inherent limits on the amount of
message throughput that can be achieved with a
message server running on a single computer.

[0006] The possibility of hardware failure results in
the need for redundant computer hardware contain-
ing identical copies of all critical data at all times.

[0007] A group of inexpensive computers may be
able to provide a required level of functionality more
cost effectively that a single large computer.

[0008] In the context of this document, we will define a
cluster as a group of computers that work together to provide
a single service with more speed and higher reliability than
can be achieved using a single computer.

[0009] A critical measure of the effectiveness of a cluster
is scalability. Scalability can generally defined as the degree
to which increased functionality is achieved by employing
additional resources. The uniqueness of this invention is the
way in which it addresses the scalability issues of message
server clustering. The specific aspects of scalability that it
addresses are:

[0010] Scalability with respect to performance: This
is the degree to which adding additional computers
to the cluster can increase the amount of data that can
be delivered with in a time period, or the speed at
which an individual message can delivers to its
destinations.

[O O l l] Scalability with respect to connections: Each
active connection to the cluster consumes a certain
amount of system resources, placing a limit on the
number of connections that can be active at one time,
even if these connections are not used to transfer
significant amounts of data. This describes the
degree to which adding additional computers to the
cluster increases the number of simultaneous active
connections that are possible.

[0012] Scalability with respect to redundancy: This is
the degree to which adding additional computers to
the cluster can increase the redundancy, and there-
fore the reliability of the cluster, especially with
regard to data storage. If each piece of data is copied
onto two different computers, then any one computer
can fail without causing data loss. If each piece of
data is copied onto three different computers, then
any two computers can fail without causing data
loss. Etc.

[0013] Scalability with respect to message storage:
This is the ability to increase the total storage capac-
ity of the cluster by adding more machines. A clus-
tering scheme that requires all computers in the
cluster to store all messages cannot scale its storage
capacity beyond the storage capacity of the least
capable computer in the cluster.

[0014] Scalability with respect to message size: This
concerns the maximum limit on the size of a single
message. Unlike the other aspects of Scalability, this
is not related to the number of computers in the
cluster. Conventional message server solutions cause

Aug. 29,2002

the maximum message size to be determined by the
amount or working memory (RAM) available in the
computers that handle the message, when other
aspects of the implementation do not limit it to be
even less than that. This invention alleviates this
restriction and allows maximum message size to be
limited only by the amount of mass storage (hard
disk capacity) available on each computer.

[0015] Messaging cluster implementations according to
the state of the art are mere extensions of servers architected
to run on a single computer. Each computer in the cluster is
a complete server, with extensions that allow it to work
together with other servers in the cluster. In order to insure
that all messages are available to all potential receivers, all
servers in the cluster must share information about the
existence of messages and/or the existence of receivers with
all other servers in the cluster. The current state of the art in
reliable network communications is unicast (point-to-point)
network connections. The use of unicast to exchange data
between all possible pairs of computers in the cluster results
in inefficient usage of the communications network that
severely limits Scalability. In a cluster of N servers, each
piece of information that a server must share with all other
servers in the cluster must be sent N-1 times across the same
communication network. This means that adding additional
servers to the cluster causes more communications network
capacity to be used, even when the actual data rate does not
change. This does not scale well, since adding large numbers
of servers to a cluster will cause the communication network
to become saturated, even with small numbers of senders
and receivers, and low message volumes.

SUMMARY OF THE INVENTION

[0016] It is thus an objective of the invention to deliver a
system and a method for delivering data using MOM which
overcomes drawbacks of existing systems and methods and
which specifically provides a highly scalable message
server.

[0017] This objective is achieved by the invention as
defined in the claims.

[0018] According to the invention different functions are
assigned to different computers in the cluster. The programs
running on each individual computer cannot, and need not,
operate as a complete server. This actually eliminates the
need for all computers in the cluster to communicate with all
other computers in the cluster. Additionally, a reliable mul-
ticast (point to multipoint) protocol is employed to further
reduce the need for identical data be sent multiple times
across the same communications network.

[0019] The invention thus defined uses a unique cluster
design to achieve a higher degree of scalability than has been
previously possible with this type of server. The cluster is
designed to scale well with respect to number of connec-
tions, message volume, and reliability. This means that the
capacity of the cluster in each of these areas will increase as
more machines are added to the cluster. In addition it is
designed to be scaleable with respect to message size, in that
it will not fail to operate with messages of arbitrarily large
size.

[0020] The cluster consists of two distinct types of nodes.
These can be visualized as forming 2 layers, with each layer

consisting exclusively on one type of node. The top layer is
reachable by messaging clients and consists of Connection
Manager (CM) nodes. CM's are responsible for managing
all activities that are specific to client connections. The
lower layer consists of nodes of type Message Manager
(MM). MM's have no direct contact with clients and are
responsible for managing all activities that are specific to
message storage and distribution.

[0021] In order to connect to the cluster, a client must
connect to one of the CM's. AU of CM's in a cluster are
interchangeable. A client will get the exact same service
from the cluster, regardless of which CM is connects to. The
CM is responsible for managing client connections, client
authentication, access control, forwarding messages from
producer clients to the MM and forwarding messages from
the MM to a consuming client. As stated above, all of the
CM's are interchangeable, and additional CM's can be
added to increase the total number of clients that can be
served by the cluster. If a CM fails, the clients that were
previously connected to that CM may reconnect to another
CM and continue functioning without any loss of service.

[0022] Messages are stored in a destination until they are
consumed. The destination can be a queue or a topic,
depending on the actual service desired. These terms are
defined in the JMS specification. Each destination exists on
one or more MM's. When a destination exists on more than
one MM, one of them is designated as the primary and is
responsible for providing all of the services of the destina-
tion. AU others MM's containing that destination are back-
ups, which maintain the same state as the primary, but do not
provide any services unless the primary fails to function.
Increasing the number of MM's increases the capacity of the
cluster to store messages and increases the number of
destinations that can be accomidated. Increasing the number
of MM's also permits an increase in the number of backup
MM's, which decreases the likelihood of loosing data if
multiple nodes fail simultaneously.

[0023] In order to assure that all clients can send messages
to, and receive from, all destinations, it is necessary that all
CM's can communicate with all MM's. and vice versa. It is
not necessary for CM's to directly communicate with other
CM's. It is not necessary for MM's to communicate with
each other directly, except for communication between
primaries and their corresponding backups. This reduces the
number of connections that must be maintained between
node by half, compared to traditional cluster designs that
require all nodes to be connected to each other. As discussed
below, the use of multicast communication removes the need
for point to point connections between nodes entirely.
Despite this, the fact that not all pairs of nodes require direct
communications still provides benefit because it allows a lot
of freedom in creating partitioned network topologies that
prevent network communication from becoming the bottle-
neck that limits the performance of the cluster. (See Drawing
2: Alternate Network Topologies)

[0024] The transfer of data between CM's and MM's is
achieved using a reliable multicast protocol. Multicast pro-
tocols are different than unicast (point to point communica-
tion) protocols in that they enable one piece of data to be
distributed to multiple machines across a network without
have to send that same data over the same network multiple
times. It is different than broadcast protocols in that it does

Aug. 29,2002

not require the data to be distributed to all computers on the capacity and the client application is effective in
local network. Multicast is the most efficient means of distributinn load evenlv across destinations.
distributing identical data to a limited number of computers
on the same local area network. The preferred embodiment
of this invention uses the reliable multicast communication
protocol provided by the product iBus//MessageBus from
Softwired.

[0025] Since data is distributed via multicast, the primary
and backup MM's can receive the same data without incur-
ring significantly more network traffic than there would be
if no backups were present. This means that the cluster can
have as many backups as desired, resulting in no limit on the
Scalability of storage redundancy. The cluster does not,
however, require that all machines store all messages, which
would limit the Scalability of cluster storage capacity.

[0026] The unique aspect of this invention is its ability to
provide the function of single logical message server, while
providing a high degree of scalability in all of the following
respects:

[0027] Scalability with respect to performance: Load
balancing permits performance to scale as the num-
ber of nodes is increased. Different clients the con-
nect to different CM's and exchange messages over
different destinations must not access the same nodes
at the same time, thus all operations done by the
cluster on behalf of these clients may execute in
parallel. Limits are imposed when many clients
compete for resources of the same CM or the same
MM (too much load on one destination), as well as
by the data network that interconnects the cluster.
When the cluster is deployed with: client applica-
tions that distribute load evenly over many destina-
tions; client connection logic that distributes clients
evenly over CM's and network topologies that per-
mit maximal parallel data transfer between CM's and
MM's, then there is no fixed limit in performance.

[0028] Scalability with respect to connections: The
number of connections that may be maintained
scales linearly with the number of CM's. This means
that if each CM can handle n connections, then m
CM's can handle mxn connections. The number of
CM nodes may be increased independently of the
number of MM nodes.

[0029] Scalability with respect to redundancy: The
use of multicast data communication allows backup
nodes maintain data synchronization with their pri-
mary node without adding load to the primary or
consuming additional network bandwidth This
means that a cluster may be deployed with as many
redundant backups as desired, without a significant
impact on cluster performance.

[0030] Scalability with respect to message storage:
On a single node, message storage is limited by the
amount of mass storage (hard disk space) that can be
attached to that node, as well as the speed at which
data can be transferred to and from that mass storage.
This cluster design does not require all MM nodes to
store all data. Each primary MM stores different
data, and the total amount of storage capacity scales
linearly with the number of primary MM nodes,
assuming all MM nodes have the same storage

[0031] Scalability with respect to message size: Mes-
sage size is unrelated to the number of nodes in the
cluster, but avoiding a fixed limit on the maximum
size is also an important scalability issue. This clus-
ter design allows clients to send messages that are
located only in mass storage. The message is read
from mass storage in chunks, with each chunk being
sent to a CM and forwarded to an MM where it is
placed back into mass storage. The first chunks of the
message may be written to mass storage in the MM
before the last ones are read from mass storage in the
client. Transfer of messages from a MM to a con-
suming client happens in the same fashion. The
result of this is that no message will cause cause
capacity limits to be exceeded, and messages that are
extremely large will not degrade performance for
other messages that are transferred at the same time.

[0032] An additional important feature of this invention is
that it does not possess a single point of failure. The failure
of any single function in the cluster will not cause the entire
system to become inoperative. Many other systems that
provide some form of fault tolerance still have dependencies
on some system aspect whose failure will render the entire
system unusable.

[0033] According to a preferred embodiment, the system
and the method are set up in a design allowing to accom-
modate programs that send and receive messages using the
Java Message Service (JMS) application programming inter-
face published by Sun Microsystems Inc. The definition of
this interface is available at http://java.sun.com/products/
jms/docs.html.

BRIEF DESCRIPTION OF THE DRAWINGS

[0034] In the following, preferred embodiments of the
invention are described with reference to drawings. In the
drawings,

[0035] Drawing 1 shows a typical message system
configuration with multiple instances of each type of
node: CM, MM primary, MM backup.

[0036] Drawing 2 shows a message system similar to
the one of Drawing 1, but with two examples of more
complex network structures used to interconnect the
nodes of the cluster, which structures allow increased
network capacity,

[0037] Drawing 3 represents the internal detail of a
Client Manager (CM) node, and

[0038] Drawing 4 shows the internal detail of a
Message Manager (MM) node.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

[0039] The structure of a complete message system in
shown in Drawing 1. In the drawing, the cluster is repre-
sented by a dashed box. The cluster comprises a number of
individual machines called nodes. Each node runs a program
that constitutes one part of the cluster. There are two types
of nodes: Message Manager MMa, MMb and Client Man-
ager CM. A cluster consists of one or more CM'S and one

Aug. 29,2002

or more MM's. The CM's are responsible for managing
client connections. The MM's are responsible for storing
messages. The Message Managers of drawing 1 serve dif-
ferent functions. Some Message Managers (MMa Primary,
MMb Primary in the drawing) serve as primaries and are
responsible for providing all the services of the destination.
Other Message Managers (MMa Backup, MMb Backup)
serve as backup servers and contain the same destinations as
a primary server. The backup servers do not provide any
services unless their primary server fails to function. Also in
Drawing 1, the network structure of the cluster is visible.
This structure is in striking contrast to clusters according to
the state of the art, where there are connections from every
server to any other server, thus leading to a n2-scaling. In the
cluster of drawing 1, a Multicast MessageBus is provided,
which connects to every Client Manager and connects to
every Message Manager. Therefore, the number of connec-
tions scales linearly with the number of servers. By listening
to the messages sent via the Multicast MessageBus, the
Backup servers maintain the same state as their primary. The
clients, of which an arbitrary number can be present, are
denoted in the Figure by a "C" enclosed by a triangle. Each
of the clients C connects to one client server CM.

[0040] Drawing 2 shows two examples of the system of
Drawing 1 with some modifications in the network structure.
Here, only the differences are described. Instead of one
Multicast MessageBus, two MessageBuses are present. This
is of course only an example, in practice, any number of
MessageBuses may be chosen, the number being adaptable
to the specific system. As can be seen in the drawing, each
Message Manager (top half of drawing 2) or each Client
Manager (bottom half of drawing 2) is connected to but one
MessageBus, respectively. On the other hand, each Client
Manager (top half of drawing 2) or each Message Manager
(bottom half of drawing 2) is connected to all Message-
Buses. It is important, though, that in any case a Primary
Message Manager is connected to the same MessageBus(es)
as its backup Message Manager. Network structures as the
one shown in drawing 2 allow to increase the network speed,
since they eliminate the bottleneck of the single Message-
Bus. It should be noted that such network structures are only
possible because not all nodes are required to communicate
directly with each other, i.e. they are only possible in a
structure according to the invention.

[0041] In the following, the architecture of an individual
node is described in more detail with reference to drawing
3, which shows a the architecture of a client manager, and
drawing 4 representing the architecture of a message man-
ager. In particular, diagrams 3 and 4 show block diagrams of
both the CM and MM nodes, respectively. The architecture
at the level shown in the diagrams is very similar for both
node types, and they share many common components.
Thus, elements occurring in both node types will be
described only once. Much of the application specific func-
tionality (the so called 'business logic') is encapsulated in
the Session Task of the CM and the Destination Task of the
MM. This functionality is well defined in the JMS specifi-
cation and does not contribute significantly to the unique-
ness of the invention, Therefore the internal structure of
these blocks is not detailed. Each of drawings 3 and 4 shows
the individual functional blocks in the node. These are
designated by solid boxes. The functional blocks are divided
into modules, which are designated by dashed lines. At the

same time the drawings show the flow of control with
arrows, and the thread structure with gray boxes.

[0042] The module structure of the nodes is intended to
subdivide each node into smaller pieces. Each module has
well defined responsibilities and the interfaces between the
modules are well defined and minimal. This approach helps
to manage the complexity of the system and facilitates
analysis, design, implementation and maintainability. The
interaction between clients and CM's, as well as between
CM's and MM's is accomplished by sending commands.
The most common type of command is one that contains a
message to delivered to some other place in the cluster, but
there commands to create new sessions, start and stop flow
control, commit transactions, etc.

[0043] The Core module contains the application specific
functionality of the node. These are the session tasks in the
drawing 3 and the destination tasks in the drawing 4. In
addition the Core contains all other functions which are must
respond to or initiate interaction with the clients or with
other nodes. In drawing 3 these are the Session Management
Tasl, Log Task, Admin Manager Task, Destination Manager
Task, Reliability Manager Task and Config Distributer Task.
In drawing 4 these are the Destination Manager Task, Admin
Manger Task, Config Distributer Task, Reliability Manager
Task, and Log Task. These functions are each described in
detail in subsequent sections of this document. The Core is
where the different threads of the node interact. The thread-
ing model is intended to provide optimal concurrency as
described later. This is best illustrated by following the
typical paths over which commands travel in the system.
command dispatchers are responsible for receiving incom-
ing commands from clients or other nodes. The command
dispatchers are designated by boxes with rounded comers. It
is important to preserve the overall order of command
arrival until the commands are routed to the individual tasks
that will act upon them. This is because the order of
command execution within each task must be well defined
and reveatable. Commands are thus delivered to the com-
mand dispatchers in a single thread to preserve this ordering.
The Core must be able to accept incoming commands at any
time, so this thread has higher execution priority than others
in the system, hence the designation Priority Thread. The
command dispatcher does little more than placing the com-
mand in the synchronized command queue of the appropri-
ate task. It then frees the thread so that it is available to
deliver the next incoming command. The synchronized
command queues (not to be confused with JMS queues
which are a type of destination) are shown as thick arrows
in the diagrams. The commands wait in the synchronized
command queues until the corresponding thread task is
ready to process them. They also provide a clean interface
between threads. There is a danger of data corruption when
two threads attempt to modify the same data at the same
time. Synchronization refers to a lock mechanism that
insures that only one thread at a time is accessing the
command queue. The individual tasks in the Core modules
are also required to send commands to other nodes, and in
the case of CM to clients. In this case the commands are
passed to the Client 110 or Cluster 110 module for transmis-
sion. This is not done via a synchronized queue, as the task
must often block awaiting a reply (usually an indication of
success or failure) from the 110 module. The corresponding
interface of the IiO modules must be svnchronized however.
The task must only provide the unique destination or session

Aug. 29,2002

ID (effectively the address) of the intended recipient. The
I10 modules takeover responsibility of routing the com-
mands over the correct connection or channel and using the
correct protocol. In some cases a task must generate a
command destined for another task in the same node. The
Inter-Task Dispatcher is provided for this purpose. It has
synchronized command queues to and from each task, and
eliminates the dangers associated with direct interaction
across different threads.

[0044] The Cluster 110 Module is contained in both the
CM and MM. The Client 110 module is only contained in the
CM. As indicated above, the Client I10 and Cluster 110 are
responsible for all of the details of communicating with
clients and other node, respectively. Each session is associ-
ated with a particular connection, and each destination is
associated with a channel. There is no need for the Core to
know about channels and connections. For the core it is onlv
important to know the type of the command, and when
appropriate, which session or destination it is intended for.
The VO modules contain Command Routers that accept
incoming commands from channels and connections and
pass them to the correct command dispatcher according to
their type. When sending outgoing commands, the Core
addressthe command using thesession ID or destination ID
of the intended recipient. In order to route outgoing com-
mands to the correct channel or connection, each 110 module
contains a table mapping Session ID's to Channel ID's
(Client 110) or Destination ID's to Channel ID's (Cluster).
The ID's are unique identifiers that are assigned when each
entity is created, and are used throughout the life of the
entity to perform command routing. In addition the Con-
nection Management and Channel Management functions
keep track of all existing connections and channels. If a
connection is unexpectedly closed, or a channel member
becomes unreachable for some reason, the Connection1
Channel Manager can use the ConnectionIChannel Table to
identify which sessions or destinations depend on that
connectionichannel, and create commands to notify the
sessions/destinations of the event.

[0045] Each of drawings 3 and 4 show a Services module.
These modules contain a collection of generic services that
are accessed by the other modules in the same node. In some
cases, the services are accessed by so many other functions,
that the control flow arrows stop at the module boundary
instead of reachinn to all of the individual functions. This is u

intended to keep the drawing from excessively cluttered. In
the MM the Services module includes the functions Thread
Pool Manager and Global ID Manager. In the CM the
Services module contains the functions Thread Pool Man-
ager, Global ID Manager, Access Control, Destination Ser-
vice, and Transaction Manager. All of these functions are
described in detail in other parts of this document.

[0046] In order to achieve high scalability, concurrency
issues must be properly addressed. Concurrency refers to
multiple activities taking place at the same time. A certain
degree of concurrency is implicit in cluster because it
consists of multiple computers operating at the same time.
The messaging cluster described here requires a much
higher degree of concurrency than that provided by multiple
computers; it requires each CM session and each MM
destination to have an independent flow of control. All
modern operating systems support multi treading, which
permits multiple threads of control within one program.

Because there are practical limits on the number of threads
that may be active in a program, and this limit will often be
less than the number of sessions or destinations present in a
node, a thread pooling scheme is employed. The thread pool
manages of collection or pool of threads which will not
exceed the number of threads the can efficiently coexist in
one program. The threads in the pool will be distributed
among the sessions or destinations on an as needed basis.

[0047] The thread pooling approach described above-in
contrast to giving each session a dedicated thread-is crucial
for the following reasons: Failure to allow for the proper
level of concurrency can cause the entire cluster to exhibit
performance degradation due to one overloaded machine or
one demanding client, even though enough resources (CPU,
memory, bandwidth) would actually be available. Spreading
the functionality of the message server over multiple
machines gives rise to a number of situations in which the
flow of control in one session may block for a relatively long
period of time, while other sessions could continue to
execute if enough threads of control are available. Examples
of these scenarios are:

[0048] Two Phase Commit: Committing a transacted
session that is accessing data from multiple MM's
requires a two phase commit protocol (internal to the
cluster). This can take a long time to complete, as it
requires several round trips of communication
between the transaction manager and the transaction
resources. Since the scope of a transaction is limited
to one session, other sessions should be able to
execute uninterrupted during this time.

[0049] Uneven Load: Despite load balancing efforts,
there will be times when individual machines in the
cluster will be more heavily loaded that others.
Sessions that are accessing data stored exclusively
on lightly loaded MM's should not be blocked by
sessions that are accessing overloaded MM's.

[0050] Very Large Messages: Support for very large
messages also give rise to situations where one
session may need to wait for a very long period of
time while bulk data is being transferred. Other
sessions should be able to send and receive smaller
messages during this time.

[0051] Distributing the client connections over many CM
processes provides one level of concurrency. As we antici-
pate typical deployments to have tens of thousands of
clients, and only tens of CM in a cluster, this is not enough.
We need many threads within each CM. Indeed, according
to the JMS specification, one of the reasons that a single
client may create multiple sessions is to achieve concur-
rency, thus it is essential that the CM be multithreaded at the
session level and not at the connection level. On the server.
each session must effectively have it's own thread in order
to fulfill the requirements described above. Since we expect
to handle thousands sessions on each CM, it is therefore not
practical to give each session a dedicated thread and to use
thread pooling instead.

[0052] These arguments apply to the MM as well, except
that the unit of concurrency is the destination. Each desti-
nation must maintain a well-defined message order, which
precludes concurrently executing the commands for one
destination. The actions of sessions that interact with com-

Aug. 29,2002

mon destinations will become at least partially serialized,
but sessions that do not access common destinations should
be able to interleave their operation without restriction.

[0053] In the following, some elements of the node archi-
tecture appearing in drawing 3 and drawing 4 and especially
the requirements they have to meet are described in more
details.

[0054] Client I10 and Cluster 110 modules:

[0055] These modules decouple the server core from the
communications infrastructure. The 110 subsystems serve to
hide communication functionality from the core server and
help divide functionality more cleanly into separate mod-
ules. The specific responsibilities of the 110 subsystems are:

[0056] Hiding ConnectionIChannel details: The func-
tionality of the CM core revolves around the session
object. JMS inherently groups together sessions by
connection, but connections are a concept of remote
communication only. Thus the client 110 subsystem
can completely hide the connection details from the
rest of the server. It takes on full responsibility for
opening and closing connections, as well as storing
all state and properties associated with the connec-
tion itself. It must, as well, provide a means to map
session ID'S to connections so that the session
objects can communicate with their corresponding
clients without the need to maintain connection
information themselves. Likewise the Cluster I/O
hides all details of the channels (ibus topics) used to
communicate with the MM's and provides a map-
ping from destination ID to channel.

[0057] Authentication: This is the act of verifying the
identity of the client using name and password or a
digital certificate. This is primarily relevant for Cli-
ent 110, but could be extended to Cluster 110 if there
is a requirement to insure the identity of nodes
joining the cluster. (This level of control is expected
to be provided by employing firewalls or otherwise
isolating the cluster network.)

[0058] Connection Access Control: (Client 110 only)
Client 110 will reject connections from clients who
are not authorized to access the message server.

[0059] Command Routing: The I10 modules are
responsible for two aspects of command routing. For
each inbound command they must identify the com-
mand type and route it the appropriate dispatcher.
For each outbound command they must identify the
type and the session or destination ID, and use these
to determine the channel or connection over which to
send the command.

[0060] The Core:

[0061] The core is the most central part of the node. It
contains the command dispatchers, command queues and
command handler tasks. It is the bridge between the single
threaded world of command dispatching and the multi-
threaded world of the task objects that handle commands. As
stated above, the 110 modules are responsible for routing
commands based on their type. For each command type,
there is a command dispatcher. Many of these command
dispatchers are very simple and do nothing more than take
each command and enqueue it into a thread safe queue. The

SessiodDestination Command Dispatcher is a bit more
complex. It dispatches to many session tasks, so it must
examine the session ID contained in the command, and place
the command in the correct queue. The Inter-task Dispatcher
is similar to the Session Command Dispatcher, but adds the
aspect that commands are submitted to the dispatcher via
multiple thread safe queues. It allows the various tasks to
send notifications to each other without requiring excessive
synchronization or creating race conditions.

[0062] The thread safe queues form a safe bridge to the
pool of threads, which executes the collection of tasks. Each
queue is configured with a 'high water mark'. This is the
maximum number of commands that are allowed to accu-
mulate in a queue before flow control will be engaged for
that session or destination. See the section on flow control
below for more information.

[0063] The task collection consists primarily of a multi-
tude of session tasks. In addition, each CM will have exactly
one task responsible for each of: Session Management,
Destination (Proxy) Management, Reliability Management,
Configuration Data Distribution and Administration. Each
MM will have exactly one task for responsible for each of:
Destination ~ a n a ~ e h e n t , Reliability - ~ a n a ~ e m e n t , Con-
figuration Data Distribution and Administration. All of these
tasks are registered with the Thread Pool Manager, which
will distribute a fixed number of threads among all of the
tasks that have commands waiting to be handled. All tasks
must implement the interface necessary to be run by the
thread pool, but they need not be aware of the thread pool
itself.

[0064] The specific responsibilities of each type of task
are:

[0065] Session Management (CM): Creating new
session tasks and registering them with the Session
Command Dispatcher and the Thread Pool.

[0066] Destination Management (MM): Creating
new destination tasks and registering them with the
Destination Command Dispatcher and the Thread
Pool.

[0067] Destination Management (CM): The Destina-
tion Service of the CM maintains information about
the destinations with which that that particular CM
interacts. The Destination Manager task processes
destination commands that arrive from the cluster
and use this to keep the Destination Service up to
date. Destination commands include creation and
destruction of destinations, plus flow control status.

[0068] Session Task (CM): This encapsulates the
functions of a JMS Session: Managing consumers
and producers, publishing and consuming messages,
managing transactions, access control, etc.

[0069] Destination Task (MM): This encapsulates the
functionality of a JMS Destination: storing and dis-
tributing messages, managing consumers and their
message selectors, committing transactions, etc.

[0070] Admin Manager: The Admin Manager is the
central coordination point for administration of the
various modules and services in a node. Each mod-
ule that requires administration can register a handler
with the Admin Manager. In the CM, the session

Aug. 29,2002

command dispatcher dispatches admin commands, example, when a destination decides to distribute a message,
because these commands are routed to the CM it must uniquely specify the consumer to which the message
through an ordinary topic with a reserved name and must be delivered using it's ID. Each message must have a
ID. (See the section on Administration below.) In the unique ID so that it's identity is never confused with another
MM, admin commands have a separate dispatcher, message as it is routed through the nodes of the cluster.
as the MM does not otherwise subscribe to topics Generation of unique ID is trivial in a monolithic server, but
hosted in other MM's. com~lex in a cluster as no two nodes in the cluster mav be

[0071] Config Distributer Task: This task listens for
requests for configuration data from new nodes. It is
a critical part of the system that insures that all nodes
use consistent configuration data. A newly started
node will request confirmation that it's configuration
data is consistent the nodes already running in the
cluster. The Config Distributer Task of each running
node will confirm or deny this. If the new node
determines that it's config data is not consistent, it
will request the config data from one existing node.
The Config Distriburter Task from that node is
responsible for providing this data.

[0072] Reliability Manager Task: This task is respon-
sible for monitoring view change events (nodes or
clients appearing or disappearing) delivered to the
node by the 110 subsystems. It must take appropriate
action if necessary. Typical action in the CM will be
to close all consumers-that listen to destinations that
no longer exist. Typical action in the MM is to close
consumers that belong to session on CM's that are no
longer reachable. In a backup MM the Reliability
Manager Task manages the fail-over process when
the primary MM fails.

[0073] The Destination Service:

[0074] The Destination Service provides essential infor-
mation about the destinations with which a CM interacts. It
is responsible for:

[0075] creatingflocating destinations of messages
that are being published, in the case of destinations
that are previously unknown to the CM

[0076] maintaining a list of known destinations with
corresponding names, ID's, flow control status and
access control lists

[0077] maintaining a mapping between destinations
and sessions that have producers for those destina-
tions or have been publishing to them in the past.
This information is essential to the forwarding of
flow control messages.

[0078] The Thread Pool Manager:

[0079] The Thread Pool Manager maintains a list of tasks
that are to be run in different threads. It maintains a collec-
tion of threads that may be smaller than the total number of
tasks. It is able to detect if each task needs to run and it will
distribute the available threads among these tasks, insuring
that each task runs in only one thread at a time.

[008O] A critical feature of embodiment of the invention
described above is that it allows for a globally unique ID
generation.

[0081] Many classes of object will be required to have
ID's that are globally unique throughout the cluster. These
ID will be used to uniquely identify these objects such as
messages, sessions, destinations, consumers, and nodes. For

permitted to assign the same ID. A unique ID can be
generated locally by each node using a combination of the
following values:

[0082] IP Address (perhaps limited to subnet
address): All computers that support the Internet
Protocol (IP) for network communications have an
IP address that is guaranteed to be unique on the
local network. If a computer is directly connected to
the public internet, this address is guaranteed to be
unique worldwide. Computers in a messaging cluster
will often be on an isolated network, which may use
non-unique IP addresses (usually in the address
block 192.168.xxx.xxx). In this case a configured
site ID is required to insure that messages routed to
other message servers on different isolated networks
always have a unique message ID.

[0083] Site ID: In the case that non-unique (internal)
IP addresses are used, the ID can be made globally
unique by adding a configured site ID.

[0084] Port Number: All computers that support the
Internet Protocol (IP) for network communications
support the concept of ports. A port specifies one of
many possible specific destinations for data delivers
to a computer over an IP network. When an appli-
cation requests to listen on a an IP port it will always
be assigned a port number that is unique on that
computer. This insures that two nodes running on the
same computer will generate a non-overlapping set
of IDS.

[0085] Locally generated sequence number: The val-
ues above will identify a node uniquely. To identify
the individual sessions, consumers, and messages, a
sequence generator will be maintained for each of
these. Asequence generator may start with zero and
must be incremented each time an ID is assigned.

[0086] Start Time: When a node is shut down and
restarted, the sequence generators may be reset to
zero. By adding the time that the node started oper-
ating, there is no chance of ID being reused.

[0087] These values should be stored in a data structure
that is compact and efficient to use for comparisons and hash
code generation. One or more long integers or an array of
byte are ideal choices. The structure must allow enough
storage capacity for compact representations of all of the
values above, including enough capacity for sequence num-
ber for all of the IDS that may be generated between restarts
of a node. (Alternately, the Start Time may be updated if the
sequence generator overflows.)

[0088] Only cluster nodes should generate unique IDS. It
is difficult to insure that a client would generate truly unique
IDS using the method described above (especially in the case
of potential non IP clients that connect via IRDA, SMS WAP
or other protocols). Client should obtain unique ID from the
server to which they are connected.

Aug. 29,2002

[0089] One of the main advantages of the invention is that
it allows for a system to handle very large messages. In the
following, a short overview over very large message han-
dling using a system and a method according to the inven-
tion is given.

[0090] AVery Large Message (VLM) is one that is too big
to fit into RAM, or at least too big to be handled efficiently
in one piece. Unlike smaller messages, which can be embed-
ded directly into a single publish command. It would be
desirable to transfer these large messages file to file using ftp
or a similar protocol. This would not be sufficient, however.

vided by the communications protocols in use. In the case of
the cluster these are tcp and iBus/lh.lessageBus. It is unde-
sirable to rely on transport level flow control, since there will
be a variety of commands multiplexed over each connection
or channel. One slow receiver would cause transport level
flow control to block all traffic on the shared connection/
channel. Also, when transport level flow control is triggered,
then there is data stored in internal buffers that is no longer
accessible to the sender and not yet available to the receiver.
It is undesirable for this data to remain 'in transit' for an
extended period of time until flow is resumed.

Firewall restrictions may block the additional protocol, even
though the JMS connection is permitted (or the JMS con- [0096] It is more desirable to rely on application level flow

nection is tunneled through http). This could also lead to a control. Since this form of flow control is part of the
application it can propagate flow control signals all the way proliferation of connections. Lastly, data transfer between to the source of commands (usually a client or destination)

the CM and MM must be multicast to achieve high avail- before flow is actually stopped, If these signals are propa-
ability using the method described below.

gated early enough, it is possible that commands that are
[0091] Very large messages must be sent from the client to stored in -intermediate buffers can be processed before
the CM over the same connection that is used for other transport level flow control is engaged.
session commands. The VLM must be multiplexed with
other connection data so that it does not block other sessions
that use that connection. This can be achieved by fragment-
ing the VLM stream and sending each piece as a separate
command. While small messages can be sent in a single
command, VLM's will be sent as a chain of commands, each
carrying the next part of the message. The CM will need to
send these fragments to the MM in the same way over an
iBus multicast channel. It must begin sending to the MM
before the last one is received from the client, as it cannot
assume that the message will fit in memory. The CM can
also employ a disk buffer to temporarily store the VLM
fragments and insure that the client session is freed as soon
as possible.

[0092] Consumption of messages works in a similar fash-
ion, with the MM sending the message to the CM in
fragments, and the CM forwarding the fragments to the
client.

[0093] It is important to note that VLM's, as they are
defined here, cannot be sent or received by a JMS client
using the standard API, which implicitly assumes that mes-
sages can be passed as single objects. The use of VLM's
would require a non standard client method, which pass or
receive 110 streams, or a non-standard message type, which
can embed a handle to the stream in the message object. This
implies that the JMS conformant client library used for the
embodiment of the invention described here is proprietary
and specific to the server implementation according to the
invention. As such it is an integral part of the messaging
system described here.

[0094] Flow control is an essential feature of a message
server that allows it to maintain integrity under heavy load.
Flow control refers to the ability of a cluster to instruct
message producers to stop producing if system resources
(particularly memory and persistent storage space) are run-
ning low. It also refers to the ability of clients to instruct the
server to stop distributing messages to it until it has the
capacity to accept more. The implementation of flow control
must insure that system resources are never exceeded yet not
it must not unnecessarily degrade system performance.

[0095] There are two levels of flow control: transport level
and application level. Transport level flow control is pro-

[0097] Application level flow control also allows the
application to have more specific knowledge of the flow
state. A queue that knows that a particular consumer is
blocked can choose to distribute messages to other consumer
instead of blocking or allowing the consume command sit in
intermediate buffers for an indefinite period of time.

[0098] Destinations need to know when the sessions
of its consumers are blocked. Queues can use this
information to distribution messages more effec-
tively. Topics can decide to stop distributing until all
consumers are unblocked.

[0099] It would be helpful for producer appliactions
to be able to know when a destination is blocked.
They can then publish to other destinations or do
other task instead of blocking. The JMS API does not
support this, but features could be added; for
example: isBlocked(Destination), trySendO/tryPub-
lish0, or an IsBlocked exception for the existing
send0 and publish0 calls.

[0100] Flow control should be propagated proac-
tively and asynchronously, so that intermediate
queues have a chance to flush before downstream
blockage occurs.

[0101] If proactive flow control propagation works as
desired, CM sessions do not need to explicitly deal
with flow control. In reality, transport level flow
control can still occur. The CM session writes data to
one client session and multiple destinations. If one of
these is blocked at the transport level, the session
should not necessarily block. The session should
process commands in order, but the destinations and
clients operate asynchronously (relative to each
other), so there is no absolute ordering of commands
from the two sources: client and cluster. The Session
Task should have multiple input queues, one from
the client, one from the cluster, and possibly a
separate one for flow control commands from des-
tinations. It can peek at the first command in each
queue, and select the one that has the highest like-
lihood of succeeding based on the flow control state
that it knows about.

Aug. 29,2002

[0102] The CM session can also be the originator of
flow control commands, in the event that commands
are building up in its input queues faster than it can
process them.

[0103] Application level flow control is implemented
using additional commands that travel over the same routes
as the data that they control. This makes it essential that
these commands are sent proactively, e.g. early enough to
reach their destination before low level flow control is
invoked or system resources are exceeded.

[0104] The table below lists the application elements that
can issue flow control commands, and to where those
commands need to be routed.

primary, so that the likelihood of the primary and all backups
failing within a given time period can be reduced to any
degree desired.

[0106] High availability is an issue primarily in the Mes-
sage Manager, as this is the only part of the system that is
responsible for storing messages persistently. The Client
Manager does not store critical state information, so the
failure of a CM is relatively easy to deal with. The fail-over
procedure for a CM will be discussed first. All subsequent
discussion will concern the MM.

[0107] High availability of the client manager:

[OlOS] The CM stores only transient state information.
Unlike the messages stored in the MM's, none of this state

Who is blocked Who needs to know How stored How propagated

Client session Destinations of all
consumer consumers in that

client session
CM session

Destination CM sessions that are
likely to publish to
this destination
Client sessions that
are likely to publish
to this destination

CM Session, client Client session
input
CM Session, Destinations of all
destination input consumers in that

session

Consumer table in
destination
Flag in CM session

Lookup table in
Destination Service of
CM
Lookup table in client

Flag in client session

Consumer table in
destination

Client -> CM
session -> CM
Destination Service ->
All Relevant
Destinations
Destination -> CM
dest manager ->
CM destination
service -> All
relevant CM
Sessions -> All
corresponding
clients
CM Session ->
client
CM session -> CM
Destination Service ->
All Relevant
Destinations

[0105] Achieving high availability is, along with increas-
ing capacity, one of the primary goals of clustering. High
availability refers to a guarantee that the services offered by
the cluster will be available at all times. The most funda-
mental measures to insure high availability consist of
designing server applications that can run continuously
without the need to go offline for regular maintenance, and
executing high quality implementation to reduce the possi-
bility of unexpected downtime. Despite these measures, the
possibility of hardware failures can never be completely
eliminated. For this reason, the most ambitious high avail-
ability schemes always employ redundant hardware. The
same service must either be provided simultaneously on
multiple computers, or the service is provided on one
machine with one or more additional machines configured as
'standby' replacements which can takeover at any time.
High availability is achieved because the likelihood of
multiple computers experiencing hardware failures within a
given time period is significantly lower than the likelihood
of a single computer experiencing a failure in that time
period. Due to the communication overhead involved in
co-coordinating the simultaneous distribution of messages
from multiple computers, the invention described here
implements the latter scheme (one primary, one or more

is expected to survive a node restart. For this reason it is not
necessary to maintain redundant copies of this state on other
CM's. If a CM fails, all clients connected to it will imme-
diately detect that the connection is broken The client library
will automatically reconnect, and the connection balancing
logic will reconnected it to any other CM that is still
operating. After connection, the client must recreate each
session. Parameters in the command to create a session can
indicate that this is a session that ran previously on another
CM and is being resumed. The client will provide informa-
tion on the last messages that were acknowledged by each
consumer, and the last sent messages or transactions that
were completed by each publisher. The client must restart
incomplete transactions and resend unconfirmed sent mes-
sages.

[0109] When a CM fails, all MM's that had been inter-
acting with that CM will be notified by the group member-
ship protocol in the MessageBus. The MM must delete all
consumer entries associated with the sessions on that CM so
that it does not try to distribute messages to clients that are
not reachable. These entries will be recreated when the client
reconnects. The MM must also rollback any messages that
were part of an uncommitted transaction of any sessions of
the defunct CM.

[0110] High availability of the Message Manager:

standbys). One of the unique features of this inventions is [O l l l] The use of a multicast protocol to transmit data
the ability to support any number of backups for each across the network is essential to the High Availability

Aug. 29,2002

scheme, as this permits data to be shared between a primary mands sent on the multicast channels in the course of normal
MM and all of it's backups without wasting network band- message processing contain the unique id of the session or
width In order to conserve resources, one iBus multicast destination that sent it, and a sequence number. It also
channel will be shared among all of Destinations in one necessary that the multicast protocol is atomic (either all
MM. This makes it logical to make the MM the basic unit listeners receive each command or none do).

D

of fail-over, and not the individual destinations. The embodi- [0120] Processing of incoming commands is sus- ment of the invention should allow multiple MM's to exist
pended in both host and target destination. Com-

within one JVM, so that fail-over can be used to selectively mands continue to be accumulated in the incoming
migrate part of the load from one machine to another.

queues of both destinations during this time.
[0112] The individual processes that are required to imple-
ment High Availability are described below: [0121] The host destination externalizes its state.

This state includes all of the messages currently
[0113] Designation of the startup role: For each logical stored in the destination, plus a table containing the
MM, the cluster may contain one primary and any number sequence number of the last command received from
of live backups. As each MM starts it must determine the primary destination and the sequence number of
whether or not it is the primary. This can be explicitly the last command received from each session that
specified, for example in a configuration file, however any has communicated with the destination.
fail-over scheme will cause a backup to become a primary
if no other primary is found within a certain period of time.
Likewise, if a backup becomes primary because the previous
primary was temporarily isolated, then there will be 2
primaries as soon as the original primary is reachable again.
In this case these 2 must negotiate to determine which will
be demoted or stopped. This means that the fail-over scheme
and the order of node startup will ultimately determine the
role of a new MM node, and not the system configuration.
See the discussion of fail-over below.

[0114] Synchronization of a new backup Message Man-
ager: This scenario assumes that a primary and zero or more

[0122] The host destination may resume processing
commands when the previous step is complete.

[OlW] The externalized state is optionally com-
pressed and then transmitted to the target via a point
to point protocol.

[0124] The target internalizes the state.

[0125] The target begins processing incoming com-
mands, but must compare the sequence number of
each command to corresponding sequence number in
the table received from the synchronization host.

backups are already live. A new MM is started, determines [0126] If the sequence number of a command from a
that it is a backup, and must synchronize it's state (directly session or the primary destination is less than or
or indirectly) with the primary. Once it is synchronized, it equal to the corresponding sequence number
can remain up to date by monitoring the multicast commu- received from the synchronization host, the com-
nication between the primary MM and the CM's. mand is ignored.

[0115] The discussion below uses these names to identify
the three different parties that could take part in the syn-
chronization. Depending on context they refer either to an
MM, or one of the Destination Tasks on that MM.

[0116] Primary: The existing MM which is currently
operating in primary mode

[0117] Host: The existing NM which is providing the
state to the target MM. This is either the Primary or
a backup that is already synchronized.

[0118] Target: the new backup MM which needs
synchronization.

[0119] The target MM begins collecting, but not process-
ing, destination commands as soon as it comes online. These
are passed to the Command Dispatcher, which accumulates
them in a generic queue until its Destination Tasks are
created. The target makes a request to locate the primary and
any backup that can provide synchronization. From the list
it receives it selects one (for performance reasons, prefer-
ence should be given to a backup over the primary). Once
negotiation is complete and the selected MM has agreed to
be the synchronization host, the target requests a list of
destinations from that host. The target creates these desti-
nations, with command processing disabled, and registers
them with the Command Dispatcher so that it can begin
accumulating commands in the input queues dedicated to
each destination. The following process is then executed for
each destination, one at time. It is necessary that all com-

[0127] If the sequence number of a command from a
session or the primary destination is one grater than
the corresponding sequence number received from
the synchronization host, the command is processed
and comparison of sequence numbers may be dis-
continued for this session or primary.

[0128] The arrival of a command from a session or
the primary destination with a sequence number that
is more than one greater than the corresponding
sequence number received from the host represents
an error condition that is not possible if the under-
lying transport medium is providing atomic ordered
multicast.

[0129] Maintaining a synchronized backup: Once a
backup is in sync, it can process commands coming from
sessions normally. It does not distribute messages however.
It will also process incoming commands that were sent by
the primary MM and update its state to remain in sync.

[0130] If a backup MM detects that it has lost synchroni-
zation due to excessive message loss (possible if it has been
disconnected from the network and declared dead by the
remaining members) it should change it's state to unsyn-
chronized, and repeat the startup procedure.

[0132] Fail-over is the process of promoting a backup MM
to be primary when the original primary MM fails. It
consists of the following steps:

Aug. 29,2002

[0133] Recognizing that the primary has failed: The
iBus//MessageBus Group Membership services,
generate an event for all other channel members
when one member leaves the channel intentionally or
unintentionally. The backups MM's will be notified
when a node on their channel fails, and they must
read application tag to see if the failed node was their
primary.

[0134] Designating the new primary (in the case of
multiple backups): The backup MM's exchange their
status with regard to synchronization. Of the up-to-
date backup MM's, specifically the one with the
lowest channel rank, will become the new primary.

[0135] Switching the designated backup into primary
mode: The backup must change state and begin
processing as a primary. Message distribution is
started.

[0136] Multiple Primaries:

[0137] If the failure of the primary was due to a temporary
network outage, the original primary could reappear at any
time. One of the primaries must then revert to backup mode.
The primaries compare their state by exchanging the set of
sequence numbers from all commands published on the MM
channel. This gives them the chance to determine which
primary is most up-to-date. The most up to date one remains,
any others revert to backup mode. If multiple primaries are
fully up-to-date, then the one with the lowest rank remains
primary.

[0138] Network Partitioning:

[0139] This is a catastrophic situation, in which a primary
MM and all of its backups may become unreachable at one
time. In this situation normal processing cannot continue,
but the cluster should insure that no rebroadcast storms
result, and that normal processing can resume once the
network is restored.

[0140] The invention is intended to support transactions at
the session level as described n the JMS specification.
Transactions are commonly associated with, but not limited
to, the field of databases. Transactions, in the data processing
sense, insure that a group of actions will be carried out
atomically and that their results are persistent. Committing
a transaction is the crucial last step when all of the individual
actions that comprise the transaction are effectively carried
out. There are exactly two possible results of a commit:
either all of the individual actions are carried out and their
results are persistently recorded, or, in the case of excep-
tional conditions, none of the actions are carried out and the
net effect is as though the whole transaction never occurred.
The latter case is referred to as a rollback. The classic
example is a bank account transfer, in which case there are
legitimate circumstances in which the whole transfer may
fail (insufficient funds, etc.), but under no circumstances
may one account be credited without the other the other
being debited. In the specific case of JMS messaging, the
sending and receiving of messages in one session within the
bounds of one transaction are not effective until committed.
In the case of a rollback, published messages are never
delivered, consumed topic messages are discarded, and
consumed queue messaged are redistributed to other recipi-
ents. Clustering causes the implementation of transactions to
become more complex than is the case in a monolithic

server. This is true, because the atomic characteristics of the
transaction must be enforced for actions that are distributed
over several computers. This results in a distributed trans-
action, and the extra coordination required to execute it is
commonly implemented by a 2 phase commit protocol. In a
2 phase commit, one entity acts as the transaction manager.
In the first phase the transaction manager requests a guar-
antee that each of the transaction participants is capable of
successfully executing the transaction. In the second phase,
the transaction manager instructs the participants to actually
perform the commit or, if not all participants were able to
offer a guarantee of success, to rollback the transaction. JMS
transactions must occur within one session, and they encom-
pass all messaging activity that has occurred within that
session since the last commit. For this reason the session
tasks in the CM act as transactions managers. The transac-
tion participants are all of the MM destinations with which
that session has interacted during the current transaction.
Transaction management is a common piece of functionality
that may be employed by all session tasks. For this reason
it is depicted as a separate box in the Services module in
drawing 3 which shows the internal structure of the CM.

[0141] The specific steps executed in the processing of a
transaction are:

[0142] Produce Message: This occurs in a fashion
similar to the non-transacted case. The producer
sends the message and continues processing without
waiting for a reply from the server. The CM passes
the message to the appropriate MM, where it is
stored marked as uncommitted. The CM adds the
message ID to the list of produced messages for the
open transaction of the corresponding session.

[0143] Consume Message: The MM sends a message
to the CM, which fomards it to a consumer. The CM
adds the message ID to the list of consumed mes-
sages for the open transaction of the corresponding
session. The message continues to be stored in the
MM where it is locked until the MM received either
a commit (equivalent to an ACK) or a rollback.

[0144] Commit: The list of produced and consumed
message IDS for a session should be organized by
destination. The CM sends a COMMIT command
containing the lists of produced and consumed mes-
sage ID'S for all destinations. The list of consumed
message ID'S is that which is provided by the client.
The one stored in the session may contain messages
that have not yet been delivered to the consumer. If
only one destination is involved, this may be a 1
phase commit, and the CM may synchronously wait
until the reply from that destination arrives. If more
than one destination is involved then a 2 phase
commit is needed. See below for more details.

[0145] Rollback: The CM sends a ROLLBACK com-
mand containing the lists of produced and consumed
message IDS for that destination. The list of con-
sumed message ID stored in the session is used, as
the message store should be returned to the state it
had at the beginning of the transaction.

[0146] Two Phase Commit:

[0147] A simple two phase commit protocol may be used
to commit transactions across multiple destinations. The

Aug. 29,2002

requirements of JMS transactions are less demanding than
those of many other transactional systems. Transactions
occurring in different session have no interdependencies and
since one producer may not produce in more than one
session, JMS sets no restrictions on the relative ordering of
messages from different transactions.

[0148] The CM, which handles the session that is con-
ducting the transaction, acts as the transaction manager. The
steps of a 2-phase commit are:

[0149] COMMIT-PREPARE command request is
sent to all MMs and lists all of the destinations
involved in the transaction and the id's of the con-
sumed and produced messages per destination, as
well as a unique transaction ID.

[0150] The Destination Command Distributor dis-
tributes copies of the command to each destination
that is involved in the transaction.

[0151] Each destination checks that all produced
messages for which it is responsible are available in
the message store and have uncommitted state. It
checks that all consumed messages for which it is
responsible are in the message store and are locked
by the session of the transaction. If so, it sends a
reply containing COMMIT-READY and a list of
destinations. Otherwise it sends a COMMIT-FAIL
message. If the MM has no destinations involved in
the transaction, then it sends a COMMIT-READY
message containing no destinations.

[0152] If the CM receives COMMIT-READY from
all involved MM's, then it sends a COMMIT-FI-
NAL message to the transaction channel, containing
the transaction ID.

[0153] The Commit Manager in each MM forwards
the COMMIT-FINAL message to each destination
involved. Each destination changes the state of the
committed messages and returns COMMIT-COM-
PLETE. If the MM has no destinations involved in
the transaction, then it sends a COMMIT-COM-
PLETE directly.

[0154] After all COMMIT-COMPLETE messages
have been received, the CM returns a success mes-
sage to the client.

[0155] If the CM receives one or more COMMIT-
- FAIL messages in response to the COMMIT-PRE-
PARE, or one or more of the destinations times out,
then it sends COMMIT-ROLLBACK messages to
all involved destinations and notifies the client of
failure.

[0156] The Role of Backup Processes in Two Phase Com-
mits:

[0157] There are several options for the role that backup
MMs can play the commit process. They range from the
optimistic extreme of not including the backup in the
commit procedure, to the conservative extreme of failing a
commit if any backup fails.

[0158] The conservative route incorporates a high risk of
causing performance problems. It means that any backup
MM, which is not contributing to the function of a normally
running system, can cause a delay a transaction or cause it

to fail if it is not functioning properly. This would mean that
the increased redundancy that comes from multiple backups
can detract from system performance and possibly make the
system less reliable than a monolithic server.

[0159] The optimistic route implies that an unlikely failure
scenario could lead to message loss. When a JMS client
successfully returns from a commit, that commit would be
guaranteed successful on the primary, but not on the backup.
Atomic multicast guarantees that the backup will receive all -
commands in the event of primary failure, as long as there
is at least one surviving channel member that had received
all commands. This means that the backup will eventually
receive all commands. Thus, in the scenario that a primary
commits a transaction and then fails, it is very likely that the
backuvs receive all command. but a resource ~roblem on the
backup, such as a full disk, could still lead to message loss.

[0160] The optimum solution is to require some, but not
all, of the redundant MMs to succeed with the commit. This
means that the primary plus a least one of the backups must
commit for the commit to be effective. The fail-over proto-
col will insure that only an up-to-date backup (one that has
processed all transactions) is allowed to become primary.

[0161] Although it is not a feature specified by JMS, the
ability to perform wildcard subscriptions is a very useful
convenience. This is the ability to subscribe to a large
number of topics in one step by simply specifying a text
pattern that matches the names of all of the desired topics
instead of subscribing to each topic individually. Users of a
messaging API very often find this feature helpful, and
sometimes even essential. The use of this technique can
eliminate the need to make individual subscriptions to
hundreds of individual topics, and can insure that new topics
that match the subscription criteria will automatically be
subscribed to on behalf of the client.

[0162] Wildcarding can be implemented mostly in the
CM. The consumer must send a subscription request to the
CM that contains a wildcard string. The string can use a
'glob' style wildcard pattern (*?) or a regular expression (for
power users-there needs to be an indication of which
method is being used). The CM is not expected to maintain
a list of all destinations in existence, just those with which
it currently interacts. The CM must 'broadcast' a message to
all MMs requesting the names of all destinations that match
the pattern. This is a variation of the basic command
required for a CM to locate a destination. The CM then
generates normal subscriptions to all of the destinations
returned.

[0163] The wildcard functionality includes the ability to
automatically merge in new destinations that are created
after the original subscription was made, if their names
match the subscription pattern. This means that each time a
new destination is created, it must advertise itself to all of the
CMs in so that they can compare its name to their list of
wildcard subscriptions.

[0164] Typically, a newly installed message server con-
tains no destinations. Destinations are created to suite the
needs of each individual server installation. In order to
facilitate certain internal functions of the cluster, however,
the invention defines certain special destinations which must
exist in every installation. These destinations have pre-
defined names, and are referred to here as 'well known'

Aug. 29,2002

destination names, in that the internal functions that use
them may begin to access them at any time whiout the need
to explicitly create them or to test for their existence.

[0165] Other parts of this document will describe the
soecific purpose of each well known destination. The names
begin with underscore characters. To avoid name conflicts,
ordinary clients will not be permitted to create destinations
with names that begin with underscores. They will usually
have special access control restrictions. The well known
destinations include:

[0166] -ADMIN-The topic for administration com-
mands

[0167] -LOG-The topic for storing and distributing
log messages

[0168] -DMQ-The Dead Message Queue

[0169] Virtually all computer systems posses parameters
that must be defined before the system can operate properly.
Many of these parameters are used to tune the performance
of a particular installation of the system to the specific
purposes for which it is used. Often network address param-
eters specific to the installation must be supplied. For these
reasons, such parameters must be configurable by the
administrator of the system. This is often accomplished
using data files containing values for the configurable
parameters. System administration includes, but is not lim-
ited to, the setting and updating of these parameters. These
two areas, configuration and administration are closely
related, as online administration commands can override
values specified in configuration files. Often such values
must be updated in the configuration files so that changes
made online persist after node restart. Many aspects of
administration affect multiple cluster nodes simultaneously,
which adds an extra degree of complexity compared to the
case of a monolithic server. It is necessary to insure that
updates that affect multiple nodes are carried out on all
affected nodes, and that these changes are updated in their
configuration files in a synchronized manner. The case of
nodes which join the cluster late or are not live when updates
are made are also considered.

[0170] Administration:

[0171] The administration subsystem is a generalized
framework for remote server administration. Any other
subsystem in the server may register a handler with it and
thereby expose its own set of administration commands to
the administration client. The nature of administration com-
mands is such that some commands are relevant only to an
individual node, some are relevant to a subset of nodes, and
some are relevant to all nodes. Some examples are:

[0172] One node: browse a queue (MM primary)

[0173] Subset of nodes: delete a message (MM pri-
mary and backups), update user list (all CMs), get
list of destinations (all MMs)

[0174] All nodes: get status

[0175] Some commands require a reply, which, in the
distributed case, is actually a composite of the replies from
many nodes; for example "get list of destinations".

[0176] Administration of the cluster is achieved by adding
an Admin Manager to each cluster node. This Admin Man-

ager will act like a session that is not associated with a client.
When it is created it will create a consumer for special topic-
ADMIN, and await administration commands on this
topic. Since access control can be defined per destination,
the -ADMIN topic may be a normal JMS topic. The Admin
Managers will be 'internal clients' within the cluster. An
administrative client application is an ordinary JMS client,
and the lowest level of the client Admin API is the definition
of a set of message formats.

[0177] The sending of replies to the admin client can be
handled by specifying a replyTo topic with each command
that the client sends. The difficulty with receiving replies is
that a JMS client cannot know how many nodes are active
in the cluster, and thus not know how many replies to expect.
Waiting for a time-out after each command is not practical.
Either administration clients must be designed to function
well despite an unknown number of asynchronous replies, or
the replies must contain some cluster internal information
indicating the total number of replies to expect. The former
is not an attractive option, since the admin API will be
available to customers and the semantics should be kept
simple. The latter is possible, but the cluster design does not
explicitly require most subsystems to know the overall
structure of the cluster. Nevertheless, this information can be
made available to the Admin Manager.

[0178] The Admin Manager will act like a JMS client that
lives inside the cluster. In this way, it can leverage the
existing messaging infrastructure to communicate with the
admin client. In the CM, the Admin Manager can be
implemented as a special subclass of a Session Task which
is automatically created during node initialization and which
is not associated with any client connection. Integrating the
Admin Manger into the MM is a bit more complex, since
MM's do not automatically listen for commands from other
MM's. In this case an extra element is needed: an Admin
Dispatcher that will listen for commands on the channel of
the -ADMIN topic, and pass them to the input queue of the
Admin Manager.

[0179] Configuration:

[0180] Configuration data is generally required in the early
stages of starting a node. For this reason is a good idea to use
a local file to store configuration data which insures that a
node can always (re)start and integrate itself into the cluster
without depending on the operational state of any other
server. The configuration system used in the cluster must
recognize online changes made to configuration parameters
via the admin API and update the configuration file to reflect
these changes. Additionally, it must insure that the updates
remain consistent across all nodes.

[0181] For our purposes, all data files required by nodes
(configuration, users, ACL's, etc.) will be considered con-
figuration files. Let us also divide the parameters into two
categories:

[0182] 1.Essential Parameters: those that are essen-
tial in order for a node to start, contact other nodes,
and initialize the Admin Manager

[0183] 2.Acquirable Parameters: those that could be
acquired from other nodes after the steps above are
complete

[0184] Handling essential parameters: Parameters in the
each category should be stored in separate files. For the

Aug. 29,2002

essential parameters, the files should be identical for all
nodes, and should not be updated online by the Admin
Manager. An administrative procedure should be in place to
insure that all nodes have identical copies of this file. An
example of this is editing only a master copy and using
UNIX rdist or a similar utility to push it to the individual
nodes. Storing the file on central network file system is not
an acceptable option as this introduces a single point of
failure.

[0185] The cluster can support immediate detection of
inconsistent configuration files using the following proce-
dure:

[0186] When a node is initialized, it creates a digest
of the configuration file that it read. This may be a
simple checksum calculation.

[0187] The node requests the corresponding digest
from all other nodes.

[0188] If the node's own digest and all those received
in response to the request are not all identical, then
and error message is generated and node startup
fails.

[0189] Handling acquirable parameters: In order to assure
consistency across nodes, acquirable parameters should be
updated either:

[0190] off-line by editing the configuration files,
when no nodes are active

[0191] online by issuing commands from an admin
client when one or more node is active

[0192] When online modifications are made, nodes that
are not online at the time will have 'state' configuration files.
During initialization, a node should perform a consistency
check similar to that described above for essential param-
eters. In the case that the node detects that it's configuration
file is state, it requests that the entire configuration file be
sent to it from another node which was already online before
the node in question started. It then uses this file for
configuration, and rewrites it's local configuration files.

[0193] This procedure works if files are not permitted to
be edited off-line when the cluster is active. If off-line
editing were allowed, then inconsistencies could be
detected, but it could be difficult to determine which file
version is more correct. Using the last modified date of the
file is not sufficient, because both files may have changed
since they were last in sync, and a merge may be necessary.
The use of a revision control system could allow such
merging to be done automatically, but would introduce a
single point of failure. The most robust solution is to rely on
a certain degree of administrator discipline and disallow
manual file updates when the cluster is running.

[0194] Event logging is a common aspect of all server
systems. In the course of operation of a computer system, the
user of the system must be notified that certain events have
expired. These event may include warnings of undesirable
circumstances of confirmation that certain critical stages
have been reach. They can include any information that may
be of interest to the user. An interactive desktop application
will usually print a message to the computer display. A
server system, in contrast, runs continuously day and night
without a user constantly viewing the computer display.

Often the computer has no display and is located in an
isolated area. The most common practice is to write such
notifications to a data file. During system design, it is
difficult to determine the best means of recording events for
a particular system installation. Therefore it is desirable to
have a generic event logging service which can be config-
ured to record event notifications to one or more of several
possible places.

[0195] A log task will be available in each node so that
information about important events or error conditions can
be recorded. As a minimum, this information should be
written to a local file for each node. It is, however, difficult
to track events that involve different nodes when each nodes
log data is in a different file. Because of this, log messages
are to be published to a well-known topic CLOG), so that
they are stored in a fault tolerant manner and can be
monitored using a JMS client. All nodes should have well
synchronized clocks, so that the consolidated log messages
can be accurately ordered. (Other aspects of the cluster
should not be highly sensitive to clock synchronization.)
Although event logging is, from a logical point of view, a
generic service, it is depicted in drawings 3 and 4 as part of
the Core modules in both the CM and the MM, and not in
the Services module. This is because the logging function is
a task that should have its own thread. This is done for
performance reasons, as logging will almost always concern
writing data to disk, network or some other slow device.
Doing this in a separate thread allows a large amount of
information to be recorded without unnecessarily slowing
down the task that generated the information.

[0196] The Dead Message Queue is a well-known queue
that is provided for use as the destination of messages for
which the ultimate disposition is not clear. These may be
messages that have remained undeliverable for an exces-
sively long period of time, or are undeliverable due to error
conditions. It may also be desirable for messages that exceed
their normal time to live be sent here. The DMQ behaves
like a normal queue, except for the fact that clients are
restricted from publishing to it directly, and the messages
contained in the DMQ must indicate their original destina-
tion and the reason for being sent to there.

[0197] Finally, it should be noted that the system and the
method described above are merely examples of a system
and a method according to the invention. It goes without
saying that the skilled person may implement a large variety
of different embodiments without leaving the scope of the
invention. Specifically, the following things are not part of
the invention and can vary arbitrarily across different
deployments of the invention:

[0198] computer hardware on which the software
runs

[0199] The number of computers used in the cluster
and allocation of CM nodes, primary MM nodes and
backup MM nodes among those computers.

[0200] The type and configuration of the network that
interconnects the nodes in the cluster

[0201] The type and configuration of the network@)
that connects clients to CM nodes

[0202] The client application that interacts with the
JMS compatible message library

Aug. 29,2002

[0203] The means for determining to which CM a
client should connect in order to balance the load
among all CM nodes. (There is a large variety of
existing hardware and software solutions for this
which are appropriate.)

GLOSSARY OF TERMS USED

[0204] Cluster: A group of processes that run on more that
one computer that work together to act like a single message
server, but with increased performance and reliability.

[0205] Node: A single logical process within a cluster.
Often a node will correspond to a single computer, but this
not strictly the case. Multiple nodes sharing a computer will
interact with other as though they are on different computers
connected only by a network.

[0206] Monolithic Server: A complete message server
running as a single node. To a client, a cluster is functionally
equivalent to a monolithic server.

[0207] Server Instance: Generic term for a single logical
message server. This can be a monolithic server or cluster as
defined above.

[0208] Client: An application program that uses the JMS
API to send messages to, or consume messages from, a
server instance.

[0209] Linear Scalability: Relationship between some sys-
tem capability (performance, storage capacity, etc.) and
some system resource in which an increase in the amount of
resource available causes a proportional increase in the
system capability. In the case of linear Scalability, a plot of
capability vs. resource results in a straight line.

[0210] JMS: (Java Message Service) A standard applica-
tion programming interface (API) for programs written in
the Java language to use for accessing the services of a
message system.

We claim:
1. A message system for delivering data in the form

messages between message clients,

comprising a server cluster containing a group of client
manager nodes,

each client manager node of said group of client manager
nodes comprising means for connecting to clients and
means for managing client connections,

the server cluster further containing a group of message
manager nodes being configured differently from the
client manager nodes,

each message manager node comprising means for storing
and distributing messages,

the system further comprising communication channel
means for providing a multicast communication chan-
nel between said at least one client manager node and
said at least one message manager node.

2. A message system according to claim 1 comprising a
plurality of message manager nodes in said group of mes-
sage manager nodes,

said message manager nodes being configured to com-
prise destinations,

said system further comprising a plurality of client man-
ager nodes,

each client manager node comprising computer program
code means for sending message data across said
multicast communication channel,

said message data containing a destination information
and not containing an individual address of a message
manager node,

each message manager node comprising computer pro-
gram code means for receiving message data compris-
ing destination information matching a destination of
the message manager.

3. A message system according to claim 2 where each
message manager node further comprises data storage
means for storing message data and comprises means for
sending message data, depending on the content of a request
signal.

4. A message system according to claim 1 where the
number of the client manager nodes of said group of client
manager nodes is independent from the number of the
message manager nodes of said group of message managers.

5. Amessage system according to claim 1 in which not all
possible pairs of nodes in the server cluster are required to
exchange data directly.

6. A message system according to claim 1, in which a
reliable multicast communications protocol is used for inter-
node data transfer, in which a plurality of message manager
nodes is provided, wherein at least two message manager
nodes are configured to contain identical destinations to
maintain one or more identical, redundant copies of stored
data from the same data transfer that maintains the original
copy of stored data.

7. A method for delivering data in the form messages
between message clients using a server cluster comprising
the steps of:

providing a group of client managers of said server cluster

providing a group of message managers of said server
cluster, said group comprising message managers hav-
ing at least one destination

connecting a message client to a client manager node of
said group of client managers of said server cluster

transmitting a message from said message client to said
client manager node,

depending on the content of said message, sending mes-
sage data by said client manager across at least one
multicast communication channel connected to said
client manager, said message data comprising a desti-
nation information addressing a destination

receiving said message data by all message managers
having said destination addressed by said destination
information and storing said message data on data
storage means of said message managers.

8. A method according to claim 7, further comprising the
steps of

depending on a list of client subscriptions of said message
manager, sending message data containing a client
information from one message manager across said at
least one multicast communication channel,

Aug. 29,2002

receiving said message data by the client manager
addressed by said client information

transmitting, depending on the content of said message
data, a message to the message client addressed by said
client information by said client manager.

9. A method according to claim 8 wherein in said group
of message managers primary message managers and
backup message managers are provided, each backup mes-
sage manager containing the same destinations as one asso-
ciated primary message manager and controlling regularly
whether said associated primary message manager func-
tions, wherein each backup manager monitors the multicast
communication on said multicast communication channel
and stores the same message data as said associated primary
message manager, and wherein each backup manager does
not send any message data unless said associated primary
message manager fails to function.

10. A method according to claim 9 where each backup
message manager is associated a channel rank and where
upon failure a primary the associated backup message
manager having the lowest or highest channel rank changes
its status and becomes a primary message manager.

ll. A method according to claim 7, wherein, if the
message size exceeds a maximum message size value, said
message to be transmitted between said message client and
said message manager is fragmented by the message man-
ager or by the message client and sent as a separate com-
mand.

12. A method according to claim 1, wherein at least two
multicast communication channels are present, and wherein
either every client manager node is connected to all of said
multicast communication channels and every message man-
ager node is connected to only one of said multicast com-
munication channels or every message manager node is
connected to all of said multicast communication channels
and every client manager node is connected to only one of
said multicast communication channels.

13. A computer program product comprising a computer
usable medium having computer readable program code
means embodied therein for enabling a computer to serve as
a client manager in a server cluster, the program product
comprising computer readable code means for enabling the
computer

to establish a connection to a message client,

to communicate with at least one message manager nodes
with means for storing messages and at least one
destination across a multicast communication channel

to receive a message from said message client, and

depending on the content of said message, to transmit
message data across said multicast communication to at
least one of said message manager nodes, said message
comprising a destination information addressing a des-
tination, further comprising computer readable code
means for enabling the computer

to receive message data containing a client information
from a message manager node, and

to transmit, depending on the content of said message
data, a message to the message client addressed by said
message data.

14. A computer program product according to claim 13,
wherein said computer readable code means for enabling the

computer to establish a connection to a message client
comprise means employing a library written in the Java
language and conforming to the Java Message Service API.

15. A computer program product according to claim 13,
wherein said computer readable code means comprise the
following elements:

a core module comprising session tasks and session
command dispatchers,

a client 110 module for routing commands, sending mes-
sages to a message client and receiving messages from
a message client, said client I10 module comprising
command routing means and connection management
means, and

a cluster 110 module for routing commands, sending
messages to a message manager and receiving mes-
sages from a message manager, said client 110 module
comprising command routing means and channel man-
agement means.

16. A computer program product according to claim 13,
wherein said computer readable code means comprise con-
figuration data, means for creating a digest of said configu-
ration data and means for sending said digest to other client
manager nodes and means for receiving a configuration data
digest from other client manager nodes, as well as means for
acquiring configuration data from other client manager
nodes in case the digest of its configuration data and a
received configuration data digest do not match.

17. A computer program product comprising a computer
usable medium having computer readable program code
means embodied therein for enabling a computer to serve as
a message manager node in a server cluster, the program
product comprising computer readable code means for
enabling the computer

to communicate with at least one client manager across a
multicast communication channel,

to receive message data from said client manager node,
said message data comprising a destination information
addressing a destination,

depending on the destination information, to store said
message data,

to maintain a list of client subscriptions, and

to compare the list of client subscriptions to available
messages, and, when there is a match, for transmitting
message information with a client information to a
client server across said multicast communication
channel.

18. A computer program product according to claim 17,
wherein said computer readable code means comprise the
following elements:

a core module comprising a destination manager task, an
admin manager task, a config distributor task, a reli-
ability manager task an destination tasks, at least one
destination command dispatcher, and

a cluster 110 module for routing commands, sending
messages to a client manager and receiving messages
and requests from a client manager, said client 110
module comprising command routing means and chan-
nel management means.

Aug. 29,2002

19. A computer program product according to claim 17,
wherein said computer readable code means comprise con-
figuration data, means for creating a digest of said configu-
ration data and means for sending said digest to other
message manager nodes and means for receiving a configu-
ration data digest from other message manager nodes, as
well as means for acquiring configuration data from other
message manager nodes in case the digest of its configura-
tion data and a received configuration data digest do not
match.

and said message manager nodes, the program product
comprising computer readable code means for enabling the
computer

to implement a message client library written in the Java
language and conforming to the Java Message Service
M I ,

to establish a connection to one of said client manager
nodes of said server cluster,

20. A computer program product comprising a computer to receive messages from said client manager node, and
usable medium having computer readable program code
means embodied therein for enabling a computer to serve as to send messages to said client manager node, the mes-
a message client connectable to a server cluster, the server sage containing a subscription information for address-
cluster comprising client manager nodes and message man- ing a destination, and not containing a message server
ager nodes being configured differently and comprising address information
communication channel means for providing a multicast
communication channel between said client manager nodes * * * * *

	Front Page
	Drawings
	Specifications
	Claims

